ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-photon tunneling

52   0   0.0 ( 0 )
 نشر من قبل Igor I. Smolyaninov
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong evidence of a single-photon tunneling effect, a direct analog of single-electron tunneling, has been obtained in the measurements of light tunneling through individual subwavelength pinholes in a thick gold film covered with a layer of polydiacetylene. The transmission of some pinholes reached saturation because of the optical nonlinearity of polydiacetylene at a very low light intensity of a few thousands photons per second. This result is explained theoretically in terms of photon blockade, similar to the Coulomb blockade phenomenon observed in single-electron tunneling experiments. The single-photon tunneling effect may find many applications in the emerging fields of quantum communication and information processing.


قيم البحث

اقرأ أيضاً

Usual paradigm in the theory of electron transport is related to the fact that the dielectric permittivity of the insulator is assumed to be constant, no time dispersion. We take into account the slow polarization dynamics of the dielectric layers in the tunnel barriers in the fluctuating electric fields induced by single-electron tunneling events and study transport in the single electron transistor (SET). Here slow dielectric implies slow compared to the characteristic time scales of the SET charging-discharging effects. We show that for strong enough polarizability, such that the induced charge on the island is comparable with the elementary charge, the transport properties of the SET substantially deviate from the known results of transport theory of SET. In particular, the coulomb blockade is more pronounced at finite temperature, the conductance peaks change their shape and the current-voltage characteristics show the memory-effect (hysteresis). However, in contrast to SETs with ferroelectric tunnel junctions, here the periodicity of the conductance in the gate voltage is not broken, instead the period strongly depends on the polarizability of the gate-dielectric. We uncover the fine structure of the hysteresis-effect where the large hysteresis loop may include a number of smaller loops. Also we predict the memory effect in the current-voltage characteristics $I(V)$, with $I(V) eq -I(-V)$.
Recent scanning tunnelling microscopy (STM) experiments reported single-molecule fluorescence induced by tunneling currents in the nanoplasmonic cavity formed by the STM tip and the substrate.The electric field of the cavity mode couples with the cur rent-induced charge fluctuations of the molecule, allowing the excitation of the mode. We investigate theoretically this system for the experimentally relevant limit of large damping rate $kappa$ for the cavity mode and arbitrary coupling strength to a single-electronic level. We find that for bias voltages close to the first inelastic threshold of photon emission, the emitted light displays anti-bunching behavior with vanishing second-order photon correlation function. At the same time, the current and the intensity of emitted light display Franck--Condon steps at multiples of the cavity frequency $omega_c$ with a width controlled by $kappa$ rather than the temperature $T$. For large bias voltages, we predict strong photon bunching of the order of the $kappa/Gamma$ where $Gamma$ is the electronic tunneling rate. Our theory thus predicts that strong coupling to a single level allows current-driven non-classical light emission.
The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied under circularly polarized electromagnetic radiation allowing us to establish clearly photon-assisted tunneling. This effect, while linear at low power, becomes highly non- linear above a relatively low power threshold. This non-linearity is attributed to the nature of the coupling of the sample to the thermostat.These results are of great importance if such systems are to be used as quantum computers.
We have used numerical modeling and a semi-analytical calculation method to find the low frequency value S_{I}(0) of the spectral density of fluctuations of current through 1D arrays of small tunnel junctions, using the ``orthodox theory of single-el ectron tunneling. In all three array types studied, at low temperature (kT << eV), increasing current induces a crossover from the Schottky value S_{I}(0)=2e<I> to the ``reduced Schottky value S_{I}(0)=2e<I>/N (where N is the array length) at some crossover current I_{c}. In uniform arrays over a ground plane, I_{c} is proportional to exp(-lambda N), where 1/lambda is the single-electron soliton length. In arrays without a ground plane, I_{c} decreases slowly with both N and lambda. Finally, we have calculated the statistics of I_{c} for ensembles of arrays with random background charges. The standard deviation of I_{c} from the ensemble average <I_{c}> is quite large, typically between 0.5 and 0.7 of <I_{c}>, while the dependence of <I_{c}> on N or lambda is so weak that it is hidden within the random fluctuations of the crossover current.
We report on the selective excitation of single impurity-bound exciton states in a GaAs double quantum well (DQW). The structure consists of two quantum wells (QWs) coupled by a thin tunnel barrier. The DQW is subject to a transverse electric field t o create spatially indirect inter-QW excitons with electrons and holes located in different QWs. We show that the presence of intra-QW charged excitons (trions) blocks carrier tunneling across the barrier to form indirect excitons, thus opening a gap in their emission spectrum. This behavior is attributed to the low binding energy of the trions. Within the tunneling blockade regime, emission becomes dominated by processes involving excitons bound to single shallow impurities, which behave as two-level centers activated by resonant tunneling. The quantum nature of the emission is confirmed by the anti-bunched photon emission statistics. The narrow distribution of emission energies ($sim 10$~meV) and the electrical connection to the QWs make these single-exciton centers interesting candidates for applications in single-photon sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا