ﻻ يوجد ملخص باللغة العربية
Recent scanning tunnelling microscopy (STM) experiments reported single-molecule fluorescence induced by tunneling currents in the nanoplasmonic cavity formed by the STM tip and the substrate.The electric field of the cavity mode couples with the current-induced charge fluctuations of the molecule, allowing the excitation of the mode. We investigate theoretically this system for the experimentally relevant limit of large damping rate $kappa$ for the cavity mode and arbitrary coupling strength to a single-electronic level. We find that for bias voltages close to the first inelastic threshold of photon emission, the emitted light displays anti-bunching behavior with vanishing second-order photon correlation function. At the same time, the current and the intensity of emitted light display Franck--Condon steps at multiples of the cavity frequency $omega_c$ with a width controlled by $kappa$ rather than the temperature $T$. For large bias voltages, we predict strong photon bunching of the order of the $kappa/Gamma$ where $Gamma$ is the electronic tunneling rate. Our theory thus predicts that strong coupling to a single level allows current-driven non-classical light emission.
We investigate the statistics of photons emitted by tunneling electrons in a single electronic level plasmonic nanojunction. We compute the waiting-time distribution of successive emitted photons $w(tau)$. When the cavity damping rate $kappa$ is larg
In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dot
We report on the selective excitation of single impurity-bound exciton states in a GaAs double quantum well (DQW). The structure consists of two quantum wells (QWs) coupled by a thin tunnel barrier. The DQW is subject to a transverse electric field t
An important consequence of the discovery of giant magnetoresistance in metallic magnetic multilayers is a broad interest in spin dependent effects in electronic transport through magnetic nanostructures. An example of such systems are tunnel junctio
A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy induced luminescence (STML) we are able to generate plasmonic light originating from inelastic tunneling processes tha