ﻻ يوجد ملخص باللغة العربية
Recent observations of GeV gamma-rays from novae have led to a paradigm shift in the understanding of these objects. While it is now believed that shocks contribute significantly to the energy budget of novae, it is still unknown if the emission is hadronic or leptonic in origin. Neutrinos could hold the key to definitively differentiating between these two scenarios, though the energies of such particles would be much lower than are typically targeted with neutrino telescopes. IceCubes densely instrumented DeepCore sub-array provides the ability to reduce the threshold for observation from 1 TeV down to approximately 10 GeV. We will discuss recent measurements in this low energy regime, details of a new sub-TeV selection, and prospects for future searches for transient neutrino emission.
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus
Realtime analyses are necessary to identify the source of high energy neutrinos. As an observatory with a 4$pi$ steradian field of view and near-100% duty cycle, the IceCube Neutrino Observatory is a unique facility for investigating transients. In 2
X-ray binaries are long-standing source candidates of Galactic cosmic rays and neutrinos. The compact object in a binary system can be the site for cosmic-ray acceleration, while high-energy neutrinos can be produced by the interactions of cosmic ray
In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and
Searches for spatial associations between high-energy neutrinos observed at the IceCube Neutrino Observatory and known astronomical objects may hold the key to establishing the neutrinos origins and the origins of hadronic cosmic rays. While extragal