ترغب بنشر مسار تعليمي؟ اضغط هنا

Realtime Follow-up of Astrophysical Transients with the IceCube Neutrino Observatory

144   0   0.0 ( 0 )
 نشر من قبل Alexander Pizzuto
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Realtime analyses are necessary to identify the source of high energy neutrinos. As an observatory with a 4$pi$ steradian field of view and near-100% duty cycle, the IceCube Neutrino Observatory is a unique facility for investigating transients. In 2016, IceCube established a pipeline that uses low-latency data to rapidly respond to astrophysical events that were of interest to the multi-messenger observational community. Here, we describe this pipeline and summarize the results from all of the analyses performed since 2016. We focus not only on those analyses which were performed in response to transients identified using other messengers such as photons and gravitational waves, but also on how this pipeline can be used to constrain populations of astrophysical neutrino transients by following up high-energy neutrino alerts.

قيم البحث

اقرأ أيضاً

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observing strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
129 - Kevin Meagher , Alex Pizzuto , 2019
The recent association between IC-170922A and the blazar TXS0506+056 highlights the importance of real-time observations for identifying possible astrophysical neutrino sources. Thanks to its near-100% duty cycle, 4$pi$ steradian field of view, and e xcellent sensitivity over many decades of energy, IceCube is well suited both to generate alerts for follow-up by other instruments and to rapidly follow up alerts generated by other instruments. Detection of neutrinos in coincidence with transient astrophysical phenomena serves as a smoking gun for hadronic processes and supplies essential information about the identities and mechanisms of cosmic-ray accelerators. In 2016, the IceCube Neutrino Observatory established a pipeline to rapidly search for neutrinos from astrophysical transients on timescales ranging from a fraction of a second to multiple weeks. Since then, 67 dedicated analyses have been performed searching for associations between IceCube neutrinos and astrophysical transients reported by radio, optical, X-ray, and gamma-ray instruments in addition to searching for lower energy neutrino signals in association with IceCubes own high-energy alerts. We present the event selection, maximum likelihood analysis method, and sensitivity of the IceCube real-time pipeline. We also summarize the results of all follow-up analyses to date.
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of $10^2 sim 10^5$ seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
On February 17 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once eve ry 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swifts X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
In 2016, IceCube initiated a system of public real-time alerts that are typically issued within one minute, following the detection of a neutrino candidate event that is likely to be of astrophysical origin. The goal of these alerts is to enable mult i-messenger observations that may identify the neutrino source. Through January 31, 2019, a total of 20 public alerts have been issued, with many of them receiving follow-up observations across multiple wavelength bands. One alert in particular, IceCube-170922A, was found to be associated with a flaring gamma-ray blazar, TXS 0506+056. This was the first >3 sigma association of a high-energy neutrino with an electromagnetic counterpart. In 2019, the IceCube collaboration is introducing a new set of neutrino candidate selections that expand the alert program. These new selections provide two alert channels. A Gold channel will issue alerts for neutrino candidates at least 50% likely to be of astrophysical origin and is expected to deliver $sim$10 alerts per year. Additionally a more frequent Bronze channel will provide $sim$20 alerts per year for neutrino candidates that are between 30% and 50% likely to be of astrophysical origin. We present the neutrino event selections used to generate these alerts, the expected alert rates, and a description of the alert message.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا