ﻻ يوجد ملخص باللغة العربية
Searches for spatial associations between high-energy neutrinos observed at the IceCube Neutrino Observatory and known astronomical objects may hold the key to establishing the neutrinos origins and the origins of hadronic cosmic rays. While extragalactic sources like the blazar TXS 0506+056 merit significant attention, Galactic sources may also represent part of the puzzle. Here, we explore whether open clusters and supernova remnants in the Milky Way contribute measurably to the IceCube track-like neutrino events above 200 TeV. By searching for positional coincidences with catalogs of known astronomical objects, we can identify and investigate neutrino events whose origins are potentially Galactic. We use Monte Carlo randomization together with models of the Galactic plane in order to determine whether these coincidences are more likely to be causal associations or random chance. In all analyses presented, the number of coincidences detected was found to be consistent with the null hypothesis of chance coincidence. Our results imply that the combined contribution of Galactic open clusters and supernova remnants to the track-like neutrino events detected at IceCube is well under 30%. This upper limit is compatible with the results presented in other Galactic neutrino studies.
The Baikal Gigaton Volume Detector (Baikal-GVD) is a km$^3$-scale neutrino detector currently under construction in Lake Baikal, Russia. The detector currently consists of 2304 optical modules arranged on 64 vertical strings. Further extension of the
The Antarctic Impulsive Transient Antenna (ANITA) collaboration has reported a total of three neutrino candidates from the experiments first three flights. One of these was the lone candidate in a search for Askaryan radio emission, and the others ca
During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and co
Recent observations of GeV gamma-rays from novae have led to a paradigm shift in the understanding of these objects. While it is now believed that shocks contribute significantly to the energy budget of novae, it is still unknown if the emission is h
The first ever identification of a cosmic ray accelerator as the consequence of spacial and temporal correlation of IceCube event 170922A with flaring of a blazar TXS 0506+056 motivated us to look for other flaring blazars in Fermi-LAT 3FGL catalog,