ﻻ يوجد ملخص باللغة العربية
The flare-associated stellar coronal mass ejection (CME) in solar-like and late type stars is quite essential for the habitability of an exoplanet. In this paper, we report detection of flare-associated CMEs in two M-dwarfs, thanks to the high cadence survey carried out by the Ground Wide-angle Camera system and the fast photometric and spectroscopic follow-ups. The flare energy in $R-$band is determined to be $1.6times10^{35} mathrm{erg}$ and $8.1times10^{33} mathrm{erg}$ based on the modeling of their light curves. The time-resolved spectroscopyic observations start at about 20 and 40 minutes after the trigger in both cases. The large projected maximum velocity of $sim500-700 mathrm{km s^{-1}}$ suggests that the high velocity wing of their H$alpha$ emission lines are most likely resulted from a CME event in both stars, after excluding the possibility of chromospheric evaporation and coronal rain. The masses of the CMEs are estimated to be $1.5-4.5times10^{19} mathrm{g}$ and $7.1times10^{18} mathrm{g}$.
Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic e
Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting ma
M dwarfs are ideal targets for the search of Earth-size planets in the habitable zone using the radial velocity method, attracting the attention of many ongoing surveys. As a by-product of these surveys, new multiple stellar systems are also found. T
M band spectra of two late-type T dwarfs, 2MASS J09373487+2931409, and Gliese 570D, confirm evidence from photometry that photospheric CO is present at abundance levels far in excess of those predicted from chemical equilibrium. These new and unambig
We present SDO/AIA observation of three types of fast-mode propagating magnetosonic waves in a GOES C3.0 flare on 2013 April 23, which was accompanied by a prominence eruption and a broad coronal mass ejection (CME). During the fast rising phase of t