ترغب بنشر مسار تعليمي؟ اضغط هنا

The CARMENES search for exoplanets around M dwarfs: Spectroscopic orbits of nine M-dwarf multiple systems, including two triples, two brown dwarf candidates, and one close M-dwarf-white dwarf binary

186   0   0.0 ( 0 )
 نشر من قبل David Baroch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

M dwarfs are ideal targets for the search of Earth-size planets in the habitable zone using the radial velocity method, attracting the attention of many ongoing surveys. As a by-product of these surveys, new multiple stellar systems are also found. This is the case also for the CARMENES survey, from which nine new SB2 systems have already been announced. Throughout the five years of the survey, the accumulation of new observations has resulted in the detection of several new multiple stellar systems with long periods and low radial-velocity amplitudes. Here, we newly characterise the spectroscopic orbits and constrain the masses of eight systems and update the properties of a system that we reported earlier. We derive the radial velocities of the stars using two-dimensional cross correlation techniques and template matching. The measurements are modelled to determine the orbital parameters of the systems. We combine CARMENES spectroscopic observations with archival high-resolution spectra from other instruments to increase the time-span of the observations and improve our analysis. When available, we also added archival photometric, astrometric, and adaptive optics imaging data to constrain the rotation periods and absolute masses of the components. We determine the spectroscopic orbits of nine multiple systems, eight of which are presented for the first time. The sample is composed of five SB1s, two SB2s, and two ST3s. The companions of two of the single-line binaries, GJ 3626 and GJ 912, have minimum masses below the stellar boundary and, thus, could be brown dwarfs. We find a new white dwarf in a close binary orbit around the M star GJ 207.1. From a global fit to radial velocities and astrometric measurements, we are able to determine the absolute masses of the components of GJ 282C, which is one of the youngest systems with measured dynamical masses.

قيم البحث

اقرأ أيضاً

Stellar activity poses one of the main obstacles for the detection and characterisation of small exoplanets around cool stars, as it can induce radial velocity (RV) signals that can hide or mimic the presence of planetary companions. Several indicato rs of stellar activity are routinely used to identify activity-related signals in RVs, but not all indicators trace exactly the same activity effects, nor are any of them always effective in all stars. We evaluate the performance of a set of spectroscopic activity indicators for M dwarf stars with different masses and activity levels with the aim of finding a relation between the indicators and stellar properties. In a sample of 98 M dwarfs observed with CARMENES, we analyse the temporal behaviour of RVs and nine spectroscopic activity indicators: cross-correlation function (CCF) full-width-at-half-maximum (FWHM), contrast, and bisector inverse slope (BIS), chromatic index (CRX), differential line width (dLW), and indices of the chromospheric lines H$alpha$ and calcium infrared triplet. A total of 56 stars of the initial sample show periodic signals related to activity in at least one of these ten parameters. RV is the parameter for which most of the targets show an activity-related signal. CRX and BIS are effective activity tracers for the most active stars in the sample, especially stars with a relatively high mass, while for less active stars, chromospheric lines perform best. FWHM and dLW show a similar behaviour in all mass and activity regimes, with the highest number of activity detections in the low-mass, high-activity regime. Most of the targets for which we cannot identify any activity-related signals are stars at the low-mass end of the sample. These low-mass stars also show the lowest RV scatter, which indicates that ultracool M dwarfs could be better candidates for planet searches than earlier types, which show larger RV jitter.
Context. The CARMENES spectrograph is surveying ~300 M dwarf stars in search for exoplanets. Among the target stars, spectroscopic binary systems have been discovered, which can be used to measure fundamental properties of stars. Aims. Using spectros copic observations, we determine the orbital and physical properties of nine new double-line spectroscopic binary systems by analysing their radial velocity curves. Methods. We use two-dimensional cross-correlation techniques to derive the radial velocities of the targets, which are then employed to determine the orbital properties. Photometric data from the literature are also analysed to search for possible eclipses and to measure stellar variability, which can yield rotation periods. Results. Out of the 342 stars selected for the CARMENES survey, 9 have been found to be double-line spectroscopic binaries, with periods ranging from 1.13 to ~8000 days and orbits with eccentricities up to 0.54. We provide empirical orbital properties and minimum masses for the sample of spectroscopic binaries. Absolute masses are also estimated from mass-luminosity calibrations, ranging between ~0.1 and ~0.6 Msol . Conclusions. These new binary systems increase the number of double-line M dwarf binary systems with known orbital parameters by 15%, and they have lower mass ratios on average.
We present the discovery and characterisation of two transiting planets observed by the Transiting Exoplanet Survey Satellite (TESS) orbiting the nearby (d ~ 22 pc), bright (J ~ 9 mag) M3.5 dwarf LTT 3780 (TOI-732). We confirm both planets and their association with LTT 3780 via ground-based photometry and determine their masses using precise radial velocities measured with the CARMENES spectrograph. Precise stellar parameters determined from CARMENES high resolution spectra confirm that LTT 3780 is a mid-M dwarf with an effective temperature of T_eff = 3360 +- 51 K, a surface gravity of log(g) = 4.81 +/- 0.04 (cgs), and an iron abundance of [Fe/H] = 0.09 +/- 0.16 dex, with an inferred mass of M_star = 0.379 +/- 0.016 M_sun and a radius of R_star = 0.382 +/- 0.012 R_sun. The ultra-short-period planet LTT 3780 b (P_b = 0.77 d) with a radius of 1.35^{+0.06}_{-0.06} R_earth, a mass of 2.34^{+0.24}_{-0.23} M_earth, and a bulk density of 5.24^{+0.94}_{-0.81} g cm^{-3} joins the population of Earth-size planets with rocky, terrestrial composition. The outer planet, LTT 3780 c, with an orbital period of 12.25 d, radius of 2.42^{+0.10}_{-0.10} R_earth, mass of 6.29^{+0.63}_{-0.61} M_earth, and mean density of 2.45^{+0.44}_{-0.37} g cm^{-3} belongs to the population of dense sub-Neptunes. With the two planets located on opposite sides of the radius gap, this planetary system is an excellent target for testing planetary formation, evolution and atmospheric models. In particular, LTT 3780 c is an ideal object for atmospheric studies with the James Webb Space Telescope.
We present the discovery of an $18.5pm0.5$M$_{rm Jup}$ brown dwarf (BD) companion to the M0V star TOI-1278. The system was first identified through a percent-deep transit in TESS photometry; further analysis showed it to be a grazing transit of a Jup iter-sized object. Radial velocity (RV) follow-up with the SPIRou near-infrared high-resolution velocimeter and spectropolarimeter in the framework of the 300-night SPIRou Legacy Survey (SLS) carried out at the Canada-France-Hawaii Telescope (CFHT) led to the detection of a Keplerian RV signal with a semi-amplitude of $2306pm10$ m/s in phase with the 14.5-day transit period, having a slight but non-zero eccentricity. The intermediate-mass ratio ($M_star/M_{rm{comp}} sim31$) is unique for having such a short separation ($0.095pm0.001$ AU) among known M-dwarf systems. Interestingly, M dwarf-brown dwarf systems with similar mass ratios exist with separations of tens to thousands of AUs.
We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 ($V = 8.9$ mag, $M = 0.58 pm 0.08$ M$_{odot}$), a bright M0.0V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of $K = 5.1pm0.4$ m s$^{-1}$ and a period of $P = 86.54pm0.06$ d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass $m_{rm p}sin{i} = 25 pm 2$ M$_{oplus}$, 1.5 times the mass of Neptune, with an orbital semi-major axis $a = 0.32$ au and low eccentricity ($e < 0.13$). HD 147379b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1d (and its first harmonic), which we attribute to the rotation period of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا