ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME

91   0   0.0 ( 0 )
 نشر من قبل Tingyu Gou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic evolution of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME experiences two distinct phases of enhanced acceleration, an impulsive one with a peak value of ~5 km s$^{-2}$ followed by an extended phase with accelerations up to 0.7 km s$^{-2}$. The two-phase CME dynamics is associated with a two-episode flare energy release. While the first episode is consistent with the standard eruption of a magnetic flux rope, the second episode of flare energy release is initiated by the reconnection of a large-scale loop in the aftermath of the eruption and produces stronger nonthermal emission up to $gamma$-rays. In addition, this long-duration flare reveals clear signs of ongoing magnetic reconnection during the decay phase, evidenced by extended HXR bursts with energies up to 100--300 keV and intermittent downflows of reconnected loops for >4 hours. The observations reveal that the two-step flare reconnection substantially contributes to the two-phase CME acceleration, and the impulsive CME acceleration precedes the most intense flare energy release. The implications of this non-standard flare/CME observation are discussed.

قيم البحث

اقرأ أيضاً

We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in RHESSI non-thermal X-rays for a set of 37 impulsive flare-CME events. CME peak velocity and peak acceleration yield distinct correlations with various parameters characterizing the flare-accelerated electron spectra. The highest correlation coefficient is obtained for the relation of the CME peak velocity and the total energy in accelerated electrons (c = 0.85), supporting the idea that the acceleration of the CME and the particle acceleration in the associated flare draw their energy from a common source, probably magnetic reconnection in the current sheet behind the erupting structure. In general, the CME peak velocity shows somewhat higher correlations with the non-thermal flare parameters than the CME peak acceleration, except for the spectral index of the accelerated electron spectrum which yields a higher correlation with the CME peak acceleration (c = -0.6), indicating that the hardness of the flare-accelerated electron spectrum is tightly coupled to the impulsive acceleration process of the rising CME structure. We also obtained high correlations between the CME initiation height $h_0$ and the non-thermal flare parameters, with the highest correlation of $h_0$ to the spectral index of flare-accelerated electrons (c = 0.8). This means that CMEs erupting at low coronal heights, i.e. in regions of stronger magnetic fields, are accompanied with flares which are more efficient to accelerate electrons to high energies. In the majority of events (80%), the non-thermal flare emission starts after the CME acceleration (6 min), giving a current sheet length at the onset of magnetic reconnection of 21 pm 7 Mm. The flare HXR peaks are well synchronized with the peak of the CME acceleration profile.
We present SDO/AIA observation of three types of fast-mode propagating magnetosonic waves in a GOES C3.0 flare on 2013 April 23, which was accompanied by a prominence eruption and a broad coronal mass ejection (CME). During the fast rising phase of t he prominence, a large-scale dome-shaped extreme ultraviolet (EUV) wave firstly formed ahead of the CME bubble and propagated at a speed of about 430 km/s in the CMEs lateral direction. One can identify the separation process of the EUV wave from the CME bubble. The reflection effect of the on-disk counterpart of this EUV wave was also observed when it interacted with a remote active region. Six minutes after the first appearance of the EUV wave, a large-scale quasi-periodic EUV train with a period of about 120 seconds appeared inside the CME bubble, which emanated from the flare epicenter and propagated outward at an average speed up to 1100 km/s. In addition, another narrow quasi-periodic EUV wave train was observed along a closed-loop system connecting two adjacent active regions, which also emanated from the flare epicenter, propagated at a speed of about475 km/s and with a period of about 110 seconds. We propose that all the observed waves are fast-mode magnetosonic waves, in which the large-scale dome-shaped EUV wave ahead of the CME bubble was driven by the expansion of the CME bubble, while the large-scale quasi-periodic EUV train within the CME bubble and the narrow quasi-periodic EUV wave train along the closed-loop system were excited by the intermittent energy-releasing process in the flare. Coronal seismology application and energy carried by the waves are also estimated based on the measured wave parameters.
The forces acting on solar Coronal Mass Ejections (CMEs) in the interplanetary medium have been evaluated so far in terms of an empirical drag coefficient $C_{rm D} sim 1$ that quantifies the role of the aerodynamic drag experienced by a typical CME due to its interaction with the ambient solar wind. We use a microphysical prescription for viscosity in the turbulent solar wind to obtain an analytical model for the drag coefficient $C_{rm D}$. This is the first physical characterization of the aerodynamic drag experienced by CMEs. We use this physically motivated prescription for $C_{rm D}$ in a simple, 1D model for CME propagation to obtain velocity profiles and travel times that agree well with observations of deceleration experienced by fast CMEs.
We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles . We used data and measurement tools available at the online CME catalog (https://cdaw.gsfc.nasa.gov) that consists of the properties of all CMEs detected by the Solar and Heliospheric Observatorys (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We found that the expansion speeds in cycle 24 are higher than those in cycle 23. We also found that the relation between radial and expansion speeds has different slopes in cycles 23 and 24. The cycle 24 slope is 45% higher than that in cycle 23. The expansion speed is also higher for a given radial speed. The difference increases with speed. For a 2000 km/s radial speed, the expansion speed in cycle 24 is ~48% higher. These results present additional evidence for the anomalous expansion of cycle 24-CMEs, which is due to the reduced total pressure in the heliosphere.
On 2010 August 14, a wide-angled coronal mass ejection (CME) was observed. This solar eruption originated from a destabilized filament that connected two active regions and the unwinding of this filament gave the eruption an untwisting motion that dr ew the attention of many observers. In addition to the erupting filament and the associated CME, several other low-coronal signatures that typically indicate the occurrence of a solar eruption were associated to this event. However, contrary to what is expected, the fast CME ($mathrm{v}>900~mathrm{km}~mathrm{s}^{-1}$) was accompanied by only a weak C4.4 flare. We investigate the various eruption signatures that were observed for this event and focus on the kinematic evolution of the filament in order to determine its eruption mechanism. Had this solar eruption occurred just a few days earlier, it could have been a significant event for space weather. The risk to underestimate the strength of this eruption based solely on the C4.4 flare illustrates the need to include all eruption signatures in event analyses in order to obtain a complete picture of a solar eruption and assess its possible space weather impact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا