ﻻ يوجد ملخص باللغة العربية
In 2017, STAR Collaboration reported the measurements of hyperon global polarization in heavy ion collisions, suggesting the subatomic fireball fluid created in these collisions as the most vortical fluid. There remains the interesting question: at which beam energy the truly most vortical fluid will be located. In this work we perform a systematic study on the beam energy dependence of hyperon global polarization phenomenon, especially in the interesting $hat{O}(1sim 10) rm GeV$ region. We find a non-monotonic trend, with the global polarization to first increase and then decrease when beam energy is lowered from $27~rm GeV$ down to $3~rm GeV$. The maximum polarization signal has been identified around $sqrt{s_{NN}} = 7.7~rm GeV$, where the heavy ion collisions presumably create the most vortical fluid. Detailed experimental measurements in the $hat{O}(1sim 10) rm GeV$ beam energy region are expected to test the prediction very soon.
The goal of heavy ion reactions at low beam energies is to explore the QCD phase diagram at high net baryon chemical potential. To relate experimental observations with a first order phase transition or a critical endpoint, dynamical approaches for t
The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$hbar$, and the
We develop a new approach to production of the spectator nucleons in the heavy ion collisions. The energy transfer to the spectator system is calculated using the Monte Carlo based on the updated version of our generator of configurations in collidin
A state-of-the-art 3+1 dimensional cascade + viscous hydro + cascade model vHLLE+UrQMD has been applied to heavy ion collisions in RHIC Beam Energy Scan range $sqrt{s_{rm NN}}=7.7dots 200$ GeV. Based on comparison to available experimental data it wa
Based on transport equations we argue that the chiral dynamics in heavy-ion collisions at high collision energies effectively decouples from the thermal physics of the fireball. With full decoupling at LHC energies the chiral condensate relaxes to it