ﻻ يوجد ملخص باللغة العربية
Based on transport equations we argue that the chiral dynamics in heavy-ion collisions at high collision energies effectively decouples from the thermal physics of the fireball. With full decoupling at LHC energies the chiral condensate relaxes to its vacuum expectation value on a much shorter time scale than the typical evolution time of the fluid dynamical fields and their fluctuations. In particular, the net-baryon density remains coupled to the bulk evolution at all collision energies. As the mass scales of the hadrons are controlled by the chiral condensate, it is reasonable to employ vacuum masses in the statistical description of the hadron production at the chemical freeze-out for high collision energies. We predict that at lower collision energies the coupling of the chiral condensate to the thermal medium gradually increases with consequences for the related hadronic masses. A new estimate for the location of the freeze-out curve takes these effects into account.
Two-particle femtoscopy reveals the space-time substructure of the freeze-out configuration from heavy ion collisions. Detailed fingerprints of bulk collectivity are evident in space-momentum correlations, which have been systematically measured as a
Relative hadron abundances from high-energy heavy-ion collisions reveal substantial inhomogeneities of temperature and baryon-chemical potential within the decoupling volume. The freeze-out volume is not perfectly stirred, i.e. the concentrations of
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/$c$ are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission take
We calculate the mean and variance of net-baryon number and net-electric charge distributions from Quantum Chromodynamics (QCD) using a next-to-leading order Taylor expansion in terms of temperature and chemical potentials. We compare these expansion