ﻻ يوجد ملخص باللغة العربية
We develop a new approach to production of the spectator nucleons in the heavy ion collisions. The energy transfer to the spectator system is calculated using the Monte Carlo based on the updated version of our generator of configurations in colliding nuclei which includes a realistic account of short-range correlations in nuclei. The transferred energy distributions are calculated within the framework of the Glauber multiple scattering theory, taking into account all the individual inelastic and elastic collisions using an independent realistic calculation of the potential energy contribution of each of the nucleon-nucleon pairs to the total potential. We show that the dominant mechanism of the energy transfer is tearing apart pairs of nucleons with the major contribution coming from the short-range correlations. We calculate the momentum distribution of the emitted nucleons which is strongly affected by short range correlations including its dependence on the azimuthal angle. In particular, we predict a strong angular asymmetry along the direction of the impact parameter b, providing a unique opportunity to determine the direction of b. Also, we predict a strong dependence of the shape of the nucleon momentum distribution on the centrality of the nucleus-nucleus collision.
We present a simple description of the energy density profile created in a nucleus-nucleus collision, motivated by high-energy QCD. The energy density is modeled as the sum of contributions coming from elementary collisions between localized charges
Relativistic heavy ion collisions, which are performed at large experimental programs such as Relativistic Heavy Ion Colliders (RHIC) STAR experiment and the Large Hadron Colliders (LHC) experiments, can create an extremely hot and dense state of the
Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affecte
By relating the charge multiplicity distribution and the temperature of a de-exciting nucleus through a deep neural network, we propose that the charge multiplicity distribution can be used as a thermometer of heavy-ion collisions. Based on an isospi
We investigate the possibilities of using measurements in present and future experiments on heavy ion collisions to answer some longstanding problems in hadronic physics, namely identifying hadronic molecular states and exotic hadrons with multiquark