ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary quotient C*-algebras of semigroups

251   0   0.0 ( 0 )
 نشر من قبل Evgenios Kakariadis T.A.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras that arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.


قيم البحث

اقرأ أيضاً

We analyze the dichotomy amenable/paradoxical in the context of (discrete, countable, unital) semigroups and corresponding semigroup rings. We consider also F{o}lners type characterizations of amenability and give an example of a semigroup whose semi group ring is algebraically amenable but has no F{o}lner sequence. In the context of inverse semigroups $S$ we give a characterization of invariant measures on $S$ (in the sense of Day) in terms of two notions: $domain$ $measurability$ and $localization$. Given a unital representation of $S$ in terms of partial bijections on some set $X$ we define a natural generalization of the uniform Roe algebra of a group, which we denote by $mathcal{R}_X$. We show that the following notions are then equivalent: (1) $X$ is domain measurable; (2) $X$ is not paradoxical; (3) $X$ satisfies the domain F{o}lner condition; (4) there is an algebraically amenable dense *-subalgebra of $mathcal{R}_X$; (5) $mathcal{R}_X$ has an amenable trace; (6) $mathcal{R}_X$ is not properly infinite and (7) $[0] ot=[1]$ in the $K_0$-group of $mathcal{R}_X$. We also show that any tracial state on $mathcal{R}_X$ is amenable. Moreover, taking into account the localization condition, we give several C*-algebraic characterizations of the amenability of $X$. Finally, we show that for a certain class of inverse semigroups, the quasidiagonality of $C_r^*left(Xright)$ implies the amenability of $X$. The converse implication is false.
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arvesons Dilation Problem to the n egative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.
We explore the recently introduced local-triviality dimensions by studying gauge actions on graph $C^*$-algebras, as well as the restrictions of the gauge action to finite cyclic subgroups. For $C^*$-algebras of finite acyclic graphs and finite cycle s, we characterize the finiteness of these dimensions, and we further study the gauge actions on many examples of graph $C^*$-algebras. These include the Toeplitz algebra, Cuntz algebras, and $q$-deformed spheres.
244 - Adam Dor-On 2021
We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of tr ansition probabilities. These C*-algebras give rise to new notions of ratio limit space and boundary for such random walks, which are computed by appealing to a companion paper by Woess. Our combined results are leveraged to identify a unique symmetry-equivariant quotient C*-algebra for any symmetric random walk on a hyperbolic group, shedding light on a question of Viselter on C*-algebras of subproduct systems.
Given a C$^*$-correspondence $X$, we give necessary and sufficient conditions for the tensor algebra $mathcal T_X^+$ to be hyperrigid. In the case where $X$ is coming from a topological graph we obtain a complete characterization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا