ﻻ يوجد ملخص باللغة العربية
We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of transition probabilities. These C*-algebras give rise to new notions of ratio limit space and boundary for such random walks, which are computed by appealing to a companion paper by Woess. Our combined results are leveraged to identify a unique symmetry-equivariant quotient C*-algebra for any symmetric random walk on a hyperbolic group, shedding light on a question of Viselter on C*-algebras of subproduct systems.
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t
I. Raeburn and J. Taylor have constructed continuous-trace C*-algebras with a prescribed Dixmier-Douady class, which also depend on the choice of an open cover of the spectrum. We study the asymptotic behavior of these algebras with respect to certai
We consider unital simple inductive limits of generalized dimension drop C*-algebras They are so-called ASH-algebras and include all unital simple AH-algebras and all dimension drop $C^*$-algebras. Suppose that $A$ is one of these C*-algebras. We sho
A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is the smallest C*-algebraic cosystem that contains an equiv
Using coordinate-free basic operators on toy Fock spaces cite{AP}, quantum random walks are defined following the ideas in cite{LP,AP}. Strong convergence of quantum random walks associated with bounded structure maps is proved under suitable assumpt