ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant Dimensions of Graph C*-algebras

116   0   0.0 ( 0 )
 نشر من قبل Benjamin Passer
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the recently introduced local-triviality dimensions by studying gauge actions on graph $C^*$-algebras, as well as the restrictions of the gauge action to finite cyclic subgroups. For $C^*$-algebras of finite acyclic graphs and finite cycles, we characterize the finiteness of these dimensions, and we further study the gauge actions on many examples of graph $C^*$-algebras. These include the Toeplitz algebra, Cuntz algebras, and $q$-deformed spheres.



قيم البحث

اقرأ أيضاً

We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t hat arise variously from isometric representations of $P$ that reflect the space $mathcal{J}$ of constructible right ideals, from associated Fell bundles, and from induced partial actions. This includes connections of appropriate quotients with the strong covariance relations in the sense of Sehnem. We then pass to the reduced representation $mathrm{C}^*_lambda(P)$ and we consider the boundary quotient $partial mathrm{C}^*_lambda(P)$ related to the minimal boundary space. We show that $partial mathrm{C}^*_lambda(P)$ is co-universal in two different classes: (a) with respect to the equivariant constructible isometric representations of $P$; and (b) with respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra $mathcal{A}(P)$. If $P$ is an Ore semigroup, or if $G$ acts topologically freely on the minimal boundary space, then $partial mathrm{C}^*_lambda(P)$ coincides with the usual C*-envelope $mathrm{C}^*_{text{env}}(mathcal{A}(P))$ in the sense of Arveson. This covers total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative semigroups of nonzero algebraic integers, and the $ax+b$-semigroups over integral domains that are not a field. In particular, we show that $P$ is an Ore semigroup if and only if there exists a canonical $*$-isomorphism from $partial mathrm{C}^*_lambda(P)$, or from $mathrm{C}^*_{text{env}}(mathcal{A}(P))$, onto $mathrm{C}^*_lambda(G)$. If any of the above holds, then $mathcal{A}(P)$ is shown to be hyperrigid.
Let X be a space, intended as a possibly curved spacetime, and A a precosheaf of C*-algebras on X. Motivated by algebraic quantum field theory, we study the Kasparov and Theta-summable K-homology of A interpreting them in terms of the holonomy equiva riant K-homology of the associated C*-dynamical system. This yields a characteristic class for K-homology cycles of A with values in the odd cohomology of X, that we interpret as a generalized statistical dimension.
Given a C$^*$-correspondence $X$, we give necessary and sufficient conditions for the tensor algebra $mathcal T_X^+$ to be hyperrigid. In the case where $X$ is coming from a topological graph we obtain a complete characterization.
Let $A$ be a unital operator algebra and let $alpha$ be an automorphism of $A$ that extends to a *-automorphism of its $ca$-envelope $cenv (A)$. In this paper we introduce the isometric semicrossed product $A times_{alpha}^{is} bbZ^+ $ and we show th at $cenv(A times_{alpha}^{is} bbZ^+) simeq cenv (A) times_{alpha} bbZ$. In contrast, the $ca$-envelope of the familiar contractive semicrossed product $A times_{alpha} bbZ^+ $ may not equal $cenv (A) times_{alpha} bbZ$. Our main tool for calculating $ca$-envelopes for semicrossed products is the concept of a relative semicrossed product of an operator algebra, which we explore in the more general context of injective endomorphisms. As an application, we extend a recent result of Davidson and Katsoulis to tensor algebras of $ca$-correspondences. We show that if $T_{X}^{+}$ is the tensor algebra of a $ca$-correspondence $(X, fA)$ and $alpha$ a completely isometric automorphism of $T_{X}^{+}$ that fixes the diagonal elementwise, then the contractive semicrossed product satisfies $ cenv(T_{X}^{+} times_{alpha} bbZ^+)simeq O_{X} times_{alpha} bbZ$, where $O_{X}$ denotes the Cuntz-Pimsner algebra of $(X, fA)$.
287 - Huaxin Lin 2008
We consider unital simple inductive limits of generalized dimension drop C*-algebras They are so-called ASH-algebras and include all unital simple AH-algebras and all dimension drop $C^*$-algebras. Suppose that $A$ is one of these C*-algebras. We sho w that $Aotimes Q$ has tracial rank no more than one, where $Q$ is the rational UHF-algebra. As a consequence, we obtain the following classification result: Let $A$ and $B$ be two unital simple inductive limits of generalized dimension drop algebras with no dimension growth. Then $Acong B$ if and only if they have the same Elliott invariant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا