ﻻ يوجد ملخص باللغة العربية
Winds from massive stars have velocities of 1000 km/s or more, and produce hot, high pressure gas when they shock. We develop a theory for the evolution of bubbles driven by the collective winds from star clusters early in their lifetimes, which involves interaction with the turbulent, dense interstellar medium of the surrounding natal molecular cloud. A key feature is the fractal nature of the hot bubbles surface. The large area of this interface with surrounding denser gas strongly enhances energy losses from the hot interior, enabled by turbulent mixing and subsequent cooling at temperatures T = 10^4-10^5 K where radiation is maximally efficient. Due to the extreme cooling, the bubble radius scales differently (R ~ t^1/2) from the classical Weaver77 solution, and has expansion velocity and momentum lower by factors of 10-10^2 at given R, with pressure lower by factors of 10^2 - 10^3. Our theory explains the weak X-ray emission and low shell expansion velocities of observed sources. We discuss further implications of our theory for observations of the hot bubbles and cooled expanding shells created by stellar winds, and for predictions of feedback-regulated star formation in a range of environments. In a companion paper, we validate our theory with a suite of hydrodynamic simulations.
In a companion paper, we develop a theory for the evolution of stellar wind driven bubbles in dense, turbulent clouds. This theory proposes that turbulent mixing at a fractal bubble-shell interface leads to highly efficient cooling, in which the vast
To date, most numerical simulations of molecular clouds, and star formation within them, assume a uniform density sphere or box with an imposed turbulent velocity field. In this work, we select molecular clouds from galactic scale simulations as init
We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific a
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a funct
A model of magnetic field structure is presented to help test the prevalence of flux freezing in star-forming clouds of various shapes, orientations, and degrees of central concentration, and to estimate their magnetic field strength. The model is ba