ﻻ يوجد ملخص باللغة العربية
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this C+/H2 gas layer accounts for almost all of the `CO-dark molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ~0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low redshift spirals we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ~0.4. At redshifts 1<z<3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (<0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
Observations show that galaxies and their interstellar media are pervaded by strong magnetic fields with energies in the diffuse component being at least comparable to the thermal and even as large or larger than the turbulent energy. Such strong mag
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate, and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1-0),
It remains a major challenge to derive a theory of cloud-scale ($lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust emp
Rings in S0s are enigmatic features which can however betray the evolutionary paths of particular galaxies. We have undertaken long-slit spectroscopy of five lenticular galaxies with UV-bright outer rings. The observations have been made with the Sou
A series of gravitational instabilities in a circumnuclear gas disk (CND) are required to trigger gas transport to a central supermassive black hole (SMBH) and ignite Active Galactic Nuclei (AGNs). A test of this scenario is to investigate whether an