ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Atomic-to-Molecular Transition and Chemical Distributions of Turbulent Star-Forming Clouds

120   0   0.0 ( 0 )
 نشر من قبل Stella Offner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C+, C, H2 and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric problems. We compare our results with the work of Glover et al. (2010), who self-consistently followed the time evolution of molecule formation in hydrodynamic simulations using a reduced chemical network. In general, we find good agreement with this in situ approach for C and CO abundances. However, the temperature and H2 abundances are discrepant in the boundary regions (Av < 5), which is due to the different number of rays used by the two approaches.

قيم البحث

اقرأ أيضاً

Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of $-1.35$ when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.
Molecular clouds are essentially made up of atomic and molecular hydrogen, which in spite of being the simplest molecule in the ISM plays a key role in the chemical evolution of molecular clouds. Since its formation time is very long, the H2 molecule s can be transported by the turbulent motions within the cloud toward low density and warm regions, where its enhanced abundance can boost the abundances of molecules with high endothermicities. We present high resolution simulations where we include the evolution of the molecular gas under the effect of the dynamics, and we analyze its impact on the abundance of CH+.
We characterize the column density probability distributions functions (PDFs) of the atomic hydrogen gas, HI, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic HI Survey to derive column density maps and PDFs. We find that the peaks of the HI PDFs occur at column densities ranging from ~1-2$times 10^{21}$ cm$^2$ (equivalently, ~0.5-1 mag). The PDFs are uniformly narrow, with a mean dispersion of $sigma_{HI}approx 10^{20}$ cm$^2$ (~0.1 mag). We also investigate the HI-to-H$_2$ transition towards the cloud complexes and estimate HI surface densities ranging from 7-16 $M_odot$ pc$^{-2}$ at the transition. We propose that the HI PDF is a fitting tool for identifying the HI-to-H$_2$ transition column in Galactic MCs.
Large-scale cosmological simulations of galaxy formation currently do not resolve the densities at which molecular hydrogen forms, implying that the atomic-to-molecular transition must be modeled either on the fly or in postprocessing. We present an improved postprocessing framework to estimate the abundance of atomic and molecular hydrogen and apply it to the IllustrisTNG simulations. We compare five different models for the atomic-to-molecular transition, including empirical, simulation-based, and theoretical prescriptions. Most of these models rely on the surface density of neutral hydrogen and the ultraviolet (UV) flux in the Lyman-Werner band as input parameters. Computing these quantities on the kiloparsec scales resolved by the simulations emerges as the main challenge. We show that the commonly used Jeans length approximation to the column density of a system can be biased and exhibits large cell-to-cell scatter. Instead, we propose to compute all surface quantities in face-on projections and perform the modeling in two dimensions. In general, the two methods agree on average, but their predictions diverge for individual galaxies and for models based on the observed midplane pressure of galaxies. We model the UV radiation from young stars by assuming a constant escape fraction and optically thin propagation throughout the galaxy. With these improvements, we find that the five models for the atomic-to-molecular transition roughly agree on average but that the details of the modeling matter for individual galaxies and the spatial distribution of molecular hydrogen. We emphasize that the estimated molecular fractions are approximate due to the significant systematic uncertainties.
135 - I. Jimenez-Serra 2012
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where d ifferent molecular species (Type I, II and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales <3000 AU within a hot core. While Type I species (H2S and 13CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC3N, OCS, SO and SO2) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH3OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO2, HC3N and CH3OH (185+-11 K, 150+-20 K and 124+-12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H2S, SO2 and CH3OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 Mo-star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photo-dissociation and a high-temperature (~1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا