ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency Domain Multi-channel Acoustic Modeling for Distant Speech Recognition

82   0   0.0 ( 0 )
 نشر من قبل Kenichi Kumatani
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional far-field automatic speech recognition (ASR) systems typically employ microphone array techniques for speech enhancement in order to improve robustness against noise or reverberation. However, such speech enhancement techniques do not always yield ASR accuracy improvement because the optimization criterion for speech enhancement is not directly relevant to the ASR objective. In this work, we develop new acoustic modeling techniques that optimize spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input based on an ASR criterion directly. In contrast to conventional methods, we incorporate array processing knowledge into the acoustic model. Moreover, we initialize the network with beamformers coefficients. We investigate effects of such MC neural networks through ASR experiments on the real-world far-field data where users are interacting with an ASR system in uncontrolled acoustic environments. We show that our MC acoustic model can reduce a word error rate (WER) by~16.5% compared to a single channel ASR system with the traditional log-mel filter bank energy (LFBE) feature on average. Our result also shows that our network with the spatial filtering layer on two-channel input achieves a relative WER reduction of~9.5% compared to conventional beamforming with seven microphones.



قيم البحث

اقرأ أيضاً

The use of spatial information with multiple microphones can improve far-field automatic speech recognition (ASR) accuracy. However, conventional microphone array techniques degrade speech enhancement performance when there is an array geometry misma tch between design and test conditions. Moreover, such speech enhancement techniques do not always yield ASR accuracy improvement due to the difference between speech enhancement and ASR optimization objectives. In this work, we propose to unify an acoustic model framework by optimizing spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input. Our acoustic model subsumes beamformers with multiple types of array geometry. In contrast to deep clustering methods that treat a neural network as a black box tool, the network encoding the spatial filters can process streaming audio data in real time without the accumulation of target signal statistics. We demonstrate the effectiveness of such MC neural networks through ASR experiments on the real-world far-field data. We show that our two-channel acoustic model can on average reduce word error rates (WERs) by~13.4 and~12.7% compared to a single channel ASR system with the log-mel filter bank energy (LFBE) feature under the matched and mismatched microphone placement conditions, respectively. Our result also shows that our two-channel network achieves a relative WER reduction of over~7.0% compared to conventional beamforming with seven microphones overall.
This paper is focused on the finetuning of acoustic models for speaker adaptation goals on a given gender. We pretrained the Transformer baseline model on Librispeech-960 and conduct experiments with finetuning on the gender-specific test subsets and . In general, we do not obtain essential WER reduction by finetuning techniques by this approach. We achieved up to ~5% lower word error rate on the male subset and 3% on the female subset if the layers in the encoder and decoder are not frozen, but the tuning is started from the last checkpoints. Moreover, we adapted our base model on the full L2 Arctic dataset of accented speech and fine-tuned it for particular speakers and male and female genders separately. The models trained on the gender subsets obtained 1-2% higher accuracy when compared to the model tuned on the whole L2 Arctic dataset. Finally, we tested the concatenation of the pretrained x-vector voice embeddings and embeddings from a conventional encoder, but its gain in accuracy is not significant.
Target speech separation refers to extracting a target speakers voice from an overlapped audio of simultaneous talkers. Previously the use of visual modality for target speech separation has demonstrated great potentials. This work proposes a general multi-modal framework for target speech separation by utilizing all the available information of the target speaker, including his/her spatial location, voice characteristics and lip movements. Also, under this framework, we investigate on the fusion methods for multi-modal joint modeling. A factorized attention-based fusion method is proposed to aggregate the high-level semantic information of multi-modalities at embedding level. This method firstly factorizes the mixture audio into a set of acoustic subspaces, then leverages the targets information from other modalities to enhance these subspace acoustic embeddings with a learnable attention scheme. To validate the robustness of proposed multi-modal separation model in practical scenarios, the system was evaluated under the condition that one of the modalities is temporarily missing, invalid or corrupted. Experiments are conducted on a large-scale audio-visual dataset collected from YouTube (to be released) that spatialized by simulated room impulse responses (RIRs). Experiment results illustrate that our proposed multi-modal framework significantly outperforms single-modal and bi-modal speech separation approaches, while can still support real-time processing.
Multi-channel inputs offer several advantages over single-channel, to improve the robustness of on-device speech recognition systems. Recent work on multi-channel transformer, has proposed a way to incorporate such inputs into end-to-end ASR for impr oved accuracy. However, this approach is characterized by a high computational complexity, which prevents it from being deployed in on-device systems. In this paper, we present a novel speech recognition model, Multi-Channel Transformer Transducer (MCTT), which features end-to-end multi-channel training, low computation cost, and low latency so that it is suitable for streaming decoding in on-device speech recognition. In a far-field in-house dataset, our MCTT outperforms stagewise multi-channel models with transformer-transducer up to 6.01% relative WER improvement (WERR). In addition, MCTT outperforms the multi-channel transformer up to 11.62% WERR, and is 15.8 times faster in terms of inference speed. We further show that we can improve the computational cost of MCTT by constraining the future and previous context in attention computations.
101 - Keyu An , Zhijian Ou 2021
Recently, the end-to-end training approach for neural beamformer-supported multi-channel ASR has shown its effectiveness in multi-channel speech recognition. However, the integration of multiple modules makes it more difficult to perform end-to-end t raining, particularly given that the multi-channel speech corpus recorded in real environments with a sizeable data scale is relatively limited. This paper explores the usage of single-channel data to improve the multi-channel end-to-end speech recognition system. Specifically, we design three schemes to exploit the single-channel data, namely pre-training, data scheduling, and data simulation. Extensive experiments on CHiME4 and AISHELL-4 datasets demonstrate that all three methods improve the multi-channel end-to-end training stability and speech recognition performance, while the data scheduling approach keeps a much simpler pipeline (vs. pre-training) and less computation cost (vs. data simulation). Moreover, we give a thorough analysis of our systems, including how the performance is affected by the choice of front-end, the data augmentation, training strategy, and single-channel data size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا