ﻻ يوجد ملخص باللغة العربية
We determine the dimensional dependence of the percolative exponents of the jamming transition via numerical simulations in four and five spatial dimensions. These novel results complement literature ones, and establish jamming as a mixed first-order percolation transition, with critical exponents $beta =0$, $gamma = 2$, $alpha = 0$ and the finite size scaling exponent $ u^* = 2/d$ for values of the spatial dimension $d geq 2$. We argue that the upper critical dimension is $d_u=2$ and the connectedness length exponent is $ u =1$.
We explain the structural origin of the jamming transition in jammed matter as the sudden appearance of k-cores at precise coordination numbers which are related not to the isostatic point, but to the sudden emergence of the 3- and 4-cores as given b
We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and ti
We investigate universal features of the jamming transition in granular materials, colloids and glasses. We show that the jamming transition in these systems has common features: slowing of response to external perturbation, and the onset of structural heterogeneities.
We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for ``Point J of the recently proposed jamming phase diagram. We measure the total number
This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equ