ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the HD 21749 Planetary System with Stellar Activity Modeling

96   0   0.0 ( 0 )
 نشر من قبل Tianjun Gan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD 21749 is a bright ($V=8.1$ mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by TESS. Follow-up spectroscopic observations measured the mass of HD 21749b to be $22.7pm2.2 M_{oplus}$ with a density of $7.0^{+1.6}_{-1.3}$ g~cm$^{-3}$, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational timescale as the planets orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian Process (GP) regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of $2.86pm0.20 R_{oplus}$, an orbital period of $35.6133pm0.0005$ d with a mass of $M_{b}=20.0pm2.7 M_{oplus}$ and a density of $4.8^{+2.0}_{-1.4}$ g~cm$^{-3}$ on an eccentric orbit with $e=0.16pm0.06$, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of $7.7902pm0.0006$ d, a radius of $1.13pm0.10 R_{oplus}$, and a 3$sigma$ mass upper limit of $3.5 M_{oplus}$. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar.



قيم البحث

اقرأ أيضاً

Nearly 15 years of radial velocity (RV) monitoring and direct imaging enabled the detection of two giant planets orbiting the young, nearby star $beta$ Pictoris. The $delta$ Scuti pulsations of the star, overwhelming planetary signals, need to be car efully suppressed. In this work, we independently revisit the analysis of the RV data following a different approach than in the literature to model the activity of the star. We show that a Gaussian Process (GP) with a stochastically driven damped harmonic oscillator kernel can model the $delta$ Scuti pulsations. It provides similar results as parametric models but with a simpler framework, using only 3 hyperparameters. It also enables to model poorly sampled RV data, that were excluded from previous analysis, hence extending the RV baseline by nearly five years. Altogether, the orbit and the mass of both planets can be constrained from RV only, which was not possible with the parametric modelling. To characterize the system more accurately, we also perform a joint fit of all available relative astrometry and RV data. Our orbital solutions for $beta$ Pic b favour a low eccentricity of $0.029^{+0.061}_{-0.024}$ and a relatively short period of $21.1^{+2.0}_{-0.8}$ yr. The orbit of $beta$ Pic c is eccentric with $0.206^{+0.074}_{-0.063}$ with a period of $3.36pm0.03$ yr. We find model-independent masses of $11.7pm1.4$ and $8.5pm0.5$ M$_{Jup}$ for $beta$ Pic b and c, respectively, assuming coplanarity. The mass of $beta$ Pic b is consistent with the hottest start evolutionary models, at an age of $25pm3$ Myr. A direct direction of $beta$ Pic c would provide a second calibration measurement in a coeval system.
The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is a project which aims to detect transits of intermediate-long period planets by refining orbital parameters of the known radial velocity planets using additional data from ground based telescopes, calculating a revised transit ephemeris for the planet, then monitoring the planet host star during the predicted transit window. Here we present the results from three systems that had high probabilities of transiting planets: HD 9446 b & c, HD 43691 b, & HD 179079 b. We provide new radial velocity (RV) measurements that are then used to improve the orbital solution for the known planets. We search the RV data for indications of additional planets in orbit and find that HD 9446 shows a strong linear trend of 4.8$sigma$. Using the newly refined planet orbital solutions, which include a new best-fit solution for the orbital period of HD 9446 c, and an improved transit ephemerides, we found no evidence of transiting planets in the photometry for each system. Transits of HD 9446 b can be ruled out completely and transits HD 9446 c & HD 43691 b can be ruled out for impact parameters up to b = 0.5778 and b = 0.898 respectively due to gaps in the photometry. A transit of HD 179079 b cannot be ruled out however due to the relatively small size of this planet compared to the large star and thus low signal to noise. We determine properties of the three host stars through spectroscopic analysis and find through photometric analysis that HD 9446 exhibits periodic variability.
As part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS), we present new radial velocities and photometry of the HD 192263 system. Our analysis of the already available Keck-HIRES and CORALIE radial velocity measurements together wit h the five new Keck measurements we report in this paper results in improved orbital parameters for the system. We derive constraints on the size and phase location of the transit window for HD 192263b, a Jupiter-mass planet with a period of 24.3587 pm 0.0022 days. We use 10 years of Automated Photoelectric Telescope (APT) photometry to analyze the stellar variability and search for planetary transits. We find continuing evidence of spot activity with periods near 23.4 days. The shape of the corresponding photometric variations changes over time, giving rise to not one but several Fourier peaks near this value. However, none of these frequencies coincides with the planets orbital period and thus we find no evidence of star-planet interactions in the system. We attribute the ~23-day variability to stellar rotation. There are also indications of spot variations on longer (8 years) timescales. Finally, we use the photometric data to exclude transits for a planet with the predicted radius of 1.09 RJ, and as small as 0.79 RJ.
Since the discovery of the transiting super-Earth CoRoT-7b, several investigations have yielded different results for the number and masses of planets present in the system, mainly owing to the stars high level of activity. We re-observed CoRoT-7 in January 2012 with both HARPS and CoRoT, so that we now have the benefit of simultaneous radial-velocity and photometric data. This allows us to use the off-transit variations in the stars light curve to estimate the radial-velocity variations induced by the suppression of convective blueshift and the flux blocked by starspots. To account for activity-related effects in the radial-velocities which do not have a photometric signature, we also include an additional activity term in the radial-velocity model, which we treat as a Gaussian process with the same covariance properties (and hence the same frequency structure) as the light curve. Our model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We measure the masses of planets b and c to be 4.73 +/- 0.95 Mearth and 13.56 +/- 1.08 Mearth, respectively. The density of CoRoT-7b is (6.61 +/- 1.72)(Rp/1.58 Rearth)^(-3) g.cm^(-3), which is compatible with a rocky composition. We search for evidence of an additional planet d, identified by previous authors with a period close to 9 days. We are not able to confirm the existence of a planet with this orbital period, which is close to the second harmonic of the stellar rotation at around 7.9 days. Using Bayesian model selection we find that a model with two planets plus activity-induced variations is most favoured.
GJ 1132b, which orbits an M dwarf, is one of the few known Earth-sized planets, and at 12 pc away it is one of the closest known transiting planets. Receiving roughly 19x Earths insolation, this planet is too hot to be habitable but can inform us abo ut the volatile content of rocky planet atmospheres around cool stars. Using Hubble STIS spectra, we search for a transit in the Lyman-alpha line of neutral hydrogen (Ly-alpha). If we were to observe a deep Ly-alpha absorption signature, that would indicate the presence of a neutral hydrogen envelope flowing from GJ 1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet does not have a detectable amount of hydrogen loss, is not losing hydrogen, or lost hydrogen and other volatiles early in the stars life. We do not detect a transit and determine a 2-sigma upper limit on the effective envelope radius of 0.36 R* in the red wing of the Ly-alpha line, which is the only portion of the spectrum we detect after absorption by the ISM. We analyze the Ly-alpha spectrum and stellar variability of GJ1132, which is a slowly-rotating 0.18 solar mass M dwarf with previously uncharacterized UV activity. Our data show stellar variabilities of 5-22%, which is consistent with the M dwarf UV variabilities of up to 41% found by citet{Loyd2014}. Understanding the role that UV variability plays in planetary atmospheres is crucial to assess atmospheric evolution and the habitability of cooler rocky exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا