ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Refinement and Stellar Properties for the HD 9446, HD 43691, and HD 179079 Planetary Systems

86   0   0.0 ( 0 )
 نشر من قبل Michelle Hill
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is a project which aims to detect transits of intermediate-long period planets by refining orbital parameters of the known radial velocity planets using additional data from ground based telescopes, calculating a revised transit ephemeris for the planet, then monitoring the planet host star during the predicted transit window. Here we present the results from three systems that had high probabilities of transiting planets: HD 9446 b & c, HD 43691 b, & HD 179079 b. We provide new radial velocity (RV) measurements that are then used to improve the orbital solution for the known planets. We search the RV data for indications of additional planets in orbit and find that HD 9446 shows a strong linear trend of 4.8$sigma$. Using the newly refined planet orbital solutions, which include a new best-fit solution for the orbital period of HD 9446 c, and an improved transit ephemerides, we found no evidence of transiting planets in the photometry for each system. Transits of HD 9446 b can be ruled out completely and transits HD 9446 c & HD 43691 b can be ruled out for impact parameters up to b = 0.5778 and b = 0.898 respectively due to gaps in the photometry. A transit of HD 179079 b cannot be ruled out however due to the relatively small size of this planet compared to the large star and thus low signal to noise. We determine properties of the three host stars through spectroscopic analysis and find through photometric analysis that HD 9446 exhibits periodic variability.

قيم البحث

اقرأ أيضاً

As part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS), we present new radial velocities and photometry of the HD 192263 system. Our analysis of the already available Keck-HIRES and CORALIE radial velocity measurements together wit h the five new Keck measurements we report in this paper results in improved orbital parameters for the system. We derive constraints on the size and phase location of the transit window for HD 192263b, a Jupiter-mass planet with a period of 24.3587 pm 0.0022 days. We use 10 years of Automated Photoelectric Telescope (APT) photometry to analyze the stellar variability and search for planetary transits. We find continuing evidence of spot activity with periods near 23.4 days. The shape of the corresponding photometric variations changes over time, giving rise to not one but several Fourier peaks near this value. However, none of these frequencies coincides with the planets orbital period and thus we find no evidence of star-planet interactions in the system. We attribute the ~23-day variability to stellar rotation. There are also indications of spot variations on longer (8 years) timescales. Finally, we use the photometric data to exclude transits for a planet with the predicted radius of 1.09 RJ, and as small as 0.79 RJ.
HD 21749 is a bright ($V=8.1$ mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by TESS. Follow-up spectroscopic observations measured the mass of HD 21749b to be $22.7 pm2.2 M_{oplus}$ with a density of $7.0^{+1.6}_{-1.3}$ g~cm$^{-3}$, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational timescale as the planets orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian Process (GP) regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of $2.86pm0.20 R_{oplus}$, an orbital period of $35.6133pm0.0005$ d with a mass of $M_{b}=20.0pm2.7 M_{oplus}$ and a density of $4.8^{+2.0}_{-1.4}$ g~cm$^{-3}$ on an eccentric orbit with $e=0.16pm0.06$, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of $7.7902pm0.0006$ d, a radius of $1.13pm0.10 R_{oplus}$, and a 3$sigma$ mass upper limit of $3.5 M_{oplus}$. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar.
103 - D. Mesa , S. Marino , M. Bonavita 2021
Recent observations of resolved cold debris disks at tens of au have revealed that gaps could be a common feature in these Kuiper belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer-in near the edges of t he disk. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1-2 M Jup for planets located inside the gap and to less than 5 M Jup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the disks around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper motion anomaly of HD 107146 to values of 2-7 au and 2-5 M Jup , respectively.
326 - John D. Monnier 2017
In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H ba nd observations of HD 144432. We confirm the complex double ring structure for the nearly face-on system HD 169142 first seen in H-band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution (SED) and J- and H-band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 AU above the midplane at a radial distance of 77 AU, co-spatial with a ring seen at 1.3mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.
An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the p resence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 nm and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is $0.512 pm 0.002arcsec$ and for HD 164509 is $0.697 pm 0.002arcsec$. This corresponds to a projected separation of $25.6 pm 1.9$ AU and $36.5 pm 1.9$ AU, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be $0.483 pm 0.007$ $M_sun$ and $0.416 pm 0.007$ $M_sun$, respectively, and their effective temperatures to be $3570 pm 8$~K and $3450 pm 7$~K, respectively. These results are consistent with the detected companions being late-type M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا