ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Mass Estimates of the $beta$ Pictoris Planetary System Through Gaussian Process Stellar Activity Modelling

120   0   0.0 ( 0 )
 نشر من قبل Thomas Vandal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nearly 15 years of radial velocity (RV) monitoring and direct imaging enabled the detection of two giant planets orbiting the young, nearby star $beta$ Pictoris. The $delta$ Scuti pulsations of the star, overwhelming planetary signals, need to be carefully suppressed. In this work, we independently revisit the analysis of the RV data following a different approach than in the literature to model the activity of the star. We show that a Gaussian Process (GP) with a stochastically driven damped harmonic oscillator kernel can model the $delta$ Scuti pulsations. It provides similar results as parametric models but with a simpler framework, using only 3 hyperparameters. It also enables to model poorly sampled RV data, that were excluded from previous analysis, hence extending the RV baseline by nearly five years. Altogether, the orbit and the mass of both planets can be constrained from RV only, which was not possible with the parametric modelling. To characterize the system more accurately, we also perform a joint fit of all available relative astrometry and RV data. Our orbital solutions for $beta$ Pic b favour a low eccentricity of $0.029^{+0.061}_{-0.024}$ and a relatively short period of $21.1^{+2.0}_{-0.8}$ yr. The orbit of $beta$ Pic c is eccentric with $0.206^{+0.074}_{-0.063}$ with a period of $3.36pm0.03$ yr. We find model-independent masses of $11.7pm1.4$ and $8.5pm0.5$ M$_{Jup}$ for $beta$ Pic b and c, respectively, assuming coplanarity. The mass of $beta$ Pic b is consistent with the hottest start evolutionary models, at an age of $25pm3$ Myr. A direct direction of $beta$ Pic c would provide a second calibration measurement in a coeval system.



قيم البحث

اقرأ أيضاً

HD 21749 is a bright ($V=8.1$ mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by TESS. Follow-up spectroscopic observations measured the mass of HD 21749b to be $22.7 pm2.2 M_{oplus}$ with a density of $7.0^{+1.6}_{-1.3}$ g~cm$^{-3}$, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational timescale as the planets orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian Process (GP) regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of $2.86pm0.20 R_{oplus}$, an orbital period of $35.6133pm0.0005$ d with a mass of $M_{b}=20.0pm2.7 M_{oplus}$ and a density of $4.8^{+2.0}_{-1.4}$ g~cm$^{-3}$ on an eccentric orbit with $e=0.16pm0.06$, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of $7.7902pm0.0006$ d, a radius of $1.13pm0.10 R_{oplus}$, and a 3$sigma$ mass upper limit of $3.5 M_{oplus}$. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar.
New photometric space missions to detect and characterise transiting exoplanets are focusing on bright stars to obtain high cadence, high signal-to-noise light curves. Since these missions will be sensitive to stellar oscillations and granulation eve n for dwarf stars, they will be limited by stellar variability. We tested the performance of Gaussian process (GP) regression on the characterisation of transiting planets, and in particular to determine how many components of variability are necessary to describe high cadence, high signal-to-noise light curves expected from CHEOPS and PLATO. We found that the best GP stellar variability model contains four to five variability components: one stellar oscillation component, two to four granulation components, and/or one rotational modulation component. This high number of components is in contrast with the one-component GP model (1GP) commonly used in the literature for transit characterisation. Therefore, we compared the performance of the best multi-component GP model with the 1GP model in the derivation of transit parameters of simulated transits. We found that for Jupiter- and Neptune-size planets the best multi-component GP model is slightly better than the 1GP model, and much better than the non-GP model that gives biased results. For Earth-size planets, the 1GP model fails to retrieve the transit because it is a poor description of stellar activity. The non-GP model gives some biased results and the best multi-component GP is capable of retrieving the correct transit model parameters. We conclude that when characterising transiting exoplanets with high signal-to-noise ratios and high cadence light curves, we need models that couple the description of stellar variability with the transits analysis, like GPs. Moreover, for Earth-like exoplanets a better description of stellar variability improves the planetary characterisation.
We present new observations of the planet beta Pictoris b from 2018 with GPI, the first GPI observations following conjunction. Based on these new measurements, we perform a joint orbit fit to the available relative astrometry from ground-based imagi ng, the Hipparcos Intermediate Astrometric Data (IAD), and the Gaia DR2 position, and demonstrate how to incorporate the IAD into direct imaging orbit fits. We find a mass consistent with predictions of hot-start evolutionary models and previous works following similar methods, though with larger uncertainties: 12.8 [+5.3, -3.2] M_Jup. Our eccentricity determination of 0.12 [+0.04, -0.03] disfavors circular orbits. We consider orbit fits to several different imaging datasets, and find generally similar posteriors on the mass for each combination of imaging data. Our analysis underscores the importance of performing joint fits to the absolute and relative astrometry simultaneously, given the strong covariance between orbital elements. Time of conjunction is well constrained within 2.8 days of 2017 September 13, with the star behind the planets Hill sphere between 2017 April 11 and 2018 February 16 (+/- 18 days). Following the recent radial velocity detection of a second planet in the system, beta Pic c, we perform additional two-planet fits combining relative astrometry, absolute astrometry, and stellar radial velocities. These joint fits find a significantly smaller mass for the imaged planet beta Pic b, of 8.0 +/- 2.6 M_Jup, in a somewhat more circular orbit. We expect future ground-based observations to further constrain the visual orbit and mass of the planet in advance of the release of Gaia DR4.
The atmospheres of close-in planets are strongly influenced by mass loss driven by the high-energy (X-ray and extreme ultraviolet, EUV) irradiation of the host star, particularly during the early stages of evolution. We recently developed a framework to exploit this connection and enable us to recover the past evolution of the stellar high-energy emission from the present-day properties of its planets, if the latter retains some remnants of their primordial hydrogen-dominated atmospheres. Furthermore, the framework can also provide constraints on planetary initial atmospheric mass fractions. The constraints on the output parameters improve when more planets can be simultaneously analysed. This makes the Kepler-11 system, which hosts six planets with bulk densities between 0.66 and 2.45g cm^{-3}, an ideal target. Our results indicate that the star has likely evolved as a slow rotator (slower than 85% of the stars with similar masses), corresponding to a high-energy emission at 150 Myr of between 1-10 times that of the current Sun. We also constrain the initial atmospheric mass fractions for the planets, obtaining a lower limit of 4.1% for planet c, a range of 3.7-5.3% for planet d, a range of 11.1-14% for planet e, a range of 1-15.6% for planet f, and a range of 4.7-8.7% for planet g assuming a disc dispersal time of 1 Myr. For planet b, the range remains poorly constrained. Our framework also suggests slightly higher masses for planets b, c, and f than have been suggested based on transit timing variation measurements. We coupled our results with published planet atmosphere accretion models to obtain a temperature (at 0.25 AU, the location of planet f) and dispersal time of the protoplanetary disc of 550 K and 1 Myr, although these results may be affected by inconsistencies in the adopted system parameters.
We report the detection of a new planetary system orbiting the nearby M2.5V star GJ357, using precision radial-velocities from three separate echelle spectrographs, HARPS, HiRES, and UVES. Three small planets have been confirmed in the system, with p eriods of 9.125+/-0.001, 3.9306+/-0.0003, and 55.70+/-0.05 days, and minimum masses of 3.33+/-0.48, 2.09+/-0.32, and 6.72+/-0.94 Me, respectively. The second planet in our system, GJ357c, was recently shown to transit by the Transiting Exoplanet Survey Satellite (TESS; Luque et al. 2019), but we could find no transit signatures for the other two planets. Dynamical analysis reveals the system is likely to be close to coplanar, is stable on Myrs timescales, and places strong upper limits on the masses of the two non-transiting planets b and d of 4.25 and 11.20 Me, respectively. Therefore, we confirm the system contains at least two super-Earths, and either a third super-Earth or mini-Neptune planet. GJ357b & c are found to be close to a 7:3 mean motion resonance, however no libration of the orbital parameters was found in our simulations. Analysis of the photometric lightcurve of the star from the TESS, when combined with our radial-velocities, reveal GJ357c has an absolute mass, radius, and density of 2.248+0.117-0.120 Me, 1.167+0.037-0.036 Re, and 7.757+0.889-0.789 g/cm3, respectively. Comparison to super-Earth structure models reveals the planet is likely an iron dominated world. The GJ357 system adds to the small sample of low-mass planetary systems with well constrained masses, and further observational and dynamical follow-up is warranted to better understand the overall population of small multi-planet systems in the solar neighbourhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا