ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial and horizontally polynomial functions on Lie groups

88   0   0.0 ( 0 )
 نشر من قبل Gioacchino Antonelli
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $mathfrak g$ of left-invariant vector fields on a Lie group $mathbb G$ and we assume that $S$ Lie generates $mathfrak g$. We say that a function $f:mathbb Gto mathbb R$ (or more generally a distribution on $mathbb G$) is $S$-polynomial if for all $Xin S$ there exists $kin mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous definition is independent on $Xin S$, they form a finite-dimensional vector space. Second, if $mathbb G$ is connected and nilpotent we show that $S$-polynomial functions are polynomial functions in the sense of Leibman. The same result may not be true for non-nilpotent groups. Finally, we show that in connected nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in exponential chart, and the vanishing of mixed derivatives of some fixed degree along directions of $mathfrak g$ are equivalent notions.



قيم البحث

اقرأ أيضاً

222 - Bruce Kleiner 2007
We give a new proof of Gromovs theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. Unlike the original proof, it does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
349 - Emmanuel Breuillard 2007
We get asymptotics for the volume of large balls in an arbitrary locally compact group G with polynomial growth. This is done via a study of the geometry of G and a generalization of P. Pansus thesis. In particular, we show that any such G is weakly commensurable to some simply connected solvable Lie group S, the Lie shadow of G. We also show that large balls in G have an asymptotic shape, i.e. after a suitable renormalization, they converge to a limiting compact set which can be interpreted geometrically. We then discuss the speed of convergence, treat some examples and give an application to ergodic theory. We also answer a question of Burago about left invariant metrics and recover some results of Stoll on the irrationality of growth series of nilpotent groups.
281 - Bobo Hua , Juergen Jost 2012
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions. More precisely, the dimension of this space of harmonic functions is at most of order $d^{D-1}$. As in the already known Riemannian case, this estimate is polynomial in the growth degree. More generally, our techniques also apply to graphs roughly isometric to Cayley graphs of groups of polynomial volume growth.
We prove that any Cayley graph $G$ with degree $d$ polynomial growth does not satisfy ${f(n)}$-containment for any $f=o(n^{d-2})$. This settles the asymptotic behaviour of the firefighter problem on such graphs as it was known that $Cn^{d-2}$ firefig hters are enough, answering and strengthening a conjecture of Develin and Hartke. We also prove that intermediate growth Cayley graphs do not satisfy polynomial containment, and give explicit lower bounds depending on the growth rate of the group. These bounds can be further improved when more geometric information is available, such as for Grigorchuks group.
We show that, in compact semisimple Lie groups and Lie algebras, any neighbourhood of the identity gets mapped, under the commutator map, to a neighbourhood of the identity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا