ﻻ يوجد ملخص باللغة العربية
We prove that any Cayley graph $G$ with degree $d$ polynomial growth does not satisfy ${f(n)}$-containment for any $f=o(n^{d-2})$. This settles the asymptotic behaviour of the firefighter problem on such graphs as it was known that $Cn^{d-2}$ firefighters are enough, answering and strengthening a conjecture of Develin and Hartke. We also prove that intermediate growth Cayley graphs do not satisfy polynomial containment, and give explicit lower bounds depending on the growth rate of the group. These bounds can be further improved when more geometric information is available, such as for Grigorchuks group.
We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $mathfrak g$ of left-invariant vector fields on a Lie group $mathbb G$ and we assume t
We give a new proof of Gromovs theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. Unlike the original proof, it does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
Asymptotic properties of finitely generated subgroups of free groups, and of finite group presentations, can be considered in several fashions, depending on the way these objects are represented and on the distribution assumed on these representation
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions.
We get asymptotics for the volume of large balls in an arbitrary locally compact group G with polynomial growth. This is done via a study of the geometry of G and a generalization of P. Pansus thesis. In particular, we show that any such G is weakly