نحن نحصل على التطبيقات الحدودية لحجم الكرات الكبيرة في مجموعة متحدة محليا موحدة G مع نمو بولينومي. يتم ذلك عبر دراسة الهندسة الجغرافية ل G وتطوير قسم الأبحاث ل P. Pansus. على وجه الخصوص، نظرنا إلى أن أي مجموعة مثل G تكون متشابهة ضعيفة ببعض المجموعات الحقيقية المتصلة البسيطة S، وهي ظل G. كما أظهرنا أن الكرات الكبيرة في G لها شكل حدودي، أي بعد تطبيق تجزئة مناسبة، يتحولون إلى مجموعة محدودة تحديدية التي يمكن تفسيرها جغرافيا. ثم نناقش سرعة التقارب، ونعالج بعض الأمثلة ونعطي تطبيقا لنظرية الأرجودية. كما نجيب على سؤال بوراجو حول المتغيرات اليسارية ونحيط ببعض النتائج التي حصل عليها ستول حول عدم الحكمية لسلاسل النمو للمجموعات النيلبوتية.
We get asymptotics for the volume of large balls in an arbitrary locally compact group G with polynomial growth. This is done via a study of the geometry of G and a generalization of P. Pansus thesis. In particular, we show that any such G is weakly commensurable to some simply connected solvable Lie group S, the Lie shadow of G. We also show that large balls in G have an asymptotic shape, i.e. after a suitable renormalization, they converge to a limiting compact set which can be interpreted geometrically. We then discuss the speed of convergence, treat some examples and give an application to ergodic theory. We also answer a question of Burago about left invariant metrics and recover some results of Stoll on the irrationality of growth series of nilpotent groups.
This book offers to study locally compact groups from the point of view of appropriate metrics that can be defined on them, in other words to study Infinite groups as geometric objects, as Gromov writes it in the title of a famous article. The theme
It is shown that a closed solvable subgroup of a connected Lie group is compactly generated. In particular, every discrete solvable subgroup of a connected Lie group is finitely generated. Generalizations to locally compact groups are discussed as far as they carry.
The purpose of this survey is to describe how locally compact groups can be studied as geometric objects. We will emphasize the main ideas and skip or just sketch most proofs, often referring the reader to our much more detailed book arXiv:1403.3796
We give a new proof of Gromovs theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. Unlike the original proof, it does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorf