ﻻ يوجد ملخص باللغة العربية
We propose a new end-to-end neural diarization (EEND) system that is based on Conformer, a recently proposed neural architecture that combines convolutional mappings and Transformer to model both local and global dependencies in speech. We first show that data augmentation and convolutional subsampling layers enhance the original self-attentive EEND in the Transformer-based EEND, and then Conformer gives an additional gain over the Transformer-based EEND. However, we notice that the Conformer-based EEND does not generalize as well from simulated to real conversation data as the Transformer-based model. This leads us to quantify the mismatch between simulated data and real speaker behavior in terms of temporal statistics reflecting turn-taking between speakers, and investigate its correlation with diarization error. By mixing simulated and real data in EEND training, we mitigate the mismatch further, with Conformer-based EEND achieving 24% error reduction over the baseline SA-EEND system, and 10% improvement over the best augmented Transformer-based system, on two-speaker CALLHOME data.
Spoken language understanding (SLU) refers to the process of inferring the semantic information from audio signals. While the neural transformers consistently deliver the best performance among the state-of-the-art neural architectures in field of na
While significant improvements have been made in recent years in terms of end-to-end automatic speech recognition (ASR) performance, such improvements were obtained through the use of very large neural networks, unfit for embedded use on edge devices
We present Espresso, an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit fairseq. Espresso supports distributed
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained compl
We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and le