ﻻ يوجد ملخص باللغة العربية
Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si. However, the fundamental understanding of the underlying mechanisms remains lacking. Here, we theoretically reproduce the experimental data for conventional group IV and III-V semiconductors without involving adjustable parameters by curing the shortcoming of classical models. We uncover that the abnormally low hole mobility in Si originating from a combination of the strong interband scattering resulting from its weak spin-orbit coupling and the intensive participation of optical phonons in hole-phonon scattering. In contrast, the strong spin-orbit coupling in Ge leads to a negligible interband scattering; the strong bond and light atom mass in diamond give rise to high optical phonons frequency, preventing their participation in scattering. Based on these understandings rooted into the fundamental atomic properties, we present design principles for semiconducting materials towards high hole mobility.
Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energ
Rutile germanium dioxide (r-GeO$_2$) is a recently predicted ultrawide-band-gap semiconductor with potential applications in high-power electronic devices, for which the carrier mobility is an important material parameter that controls the device eff
Covalent amorphous semiconductors, such as amorphous silicon (a-Si) and germanium (a-Ge), are commonly believed to have localized electronic states at the top of the valence band and the bottom of the conduction band. Electrical conductivity is thoug
The development of high performance transparent conducting oxides (TCOs) is critical to many technologies from transparent electronics to solar cells. While n-type TCOs are present in many devices, current p-type TCOs are not largely commercialized a
Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal