ترغب بنشر مسار تعليمي؟ اضغط هنا

Materials design principles towards high hole mobility learning from an abnormally low hole mobility of silicon

541   0   0.0 ( 0 )
 نشر من قبل QiaoLin Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si. However, the fundamental understanding of the underlying mechanisms remains lacking. Here, we theoretically reproduce the experimental data for conventional group IV and III-V semiconductors without involving adjustable parameters by curing the shortcoming of classical models. We uncover that the abnormally low hole mobility in Si originating from a combination of the strong interband scattering resulting from its weak spin-orbit coupling and the intensive participation of optical phonons in hole-phonon scattering. In contrast, the strong spin-orbit coupling in Ge leads to a negligible interband scattering; the strong bond and light atom mass in diamond give rise to high optical phonons frequency, preventing their participation in scattering. Based on these understandings rooted into the fundamental atomic properties, we present design principles for semiconducting materials towards high hole mobility.

قيم البحث

اقرأ أيضاً

Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energ y renormalization and lifetime. The valence band ground state changes between light- and heavy-hole character, as the strain fields and the nanowire size are changed. Drastic changes in the mobility arise with the onset of resonance between the LO-phonons and the separation between valence subbands.
Rutile germanium dioxide (r-GeO$_2$) is a recently predicted ultrawide-band-gap semiconductor with potential applications in high-power electronic devices, for which the carrier mobility is an important material parameter that controls the device eff iciency. We apply first-principles calculations based on density functional and density functional perturbation theory to investigate carrier-phonon coupling in r-GeO$_2$ and predict its phonon-limited electron and hole mobilities as a function of temperature and crystallographic orientation. The calculated carrier mobilities at 300 K are $mu_{text{elec},perp vec{c}}$=244 cm$^2$ V$^{-1}$ s$^{-1}$, $mu_{text{elec},||vec{c}}$=377 cm$^2$ V$^{-1}$ s$^{-1}$, $mu_{text{hole},perp vec{c}}$=27 cm$^2$ V$^{-1}$ s$^{-1}$, and $mu_{text{hole},||vec{c}}$=29 cm$^2$ V$^{-1}$ s$^{-1}$. At room temperature, carrier scattering is dominated by the low-frequency polar-optical phonon modes. The predicted Baliga figure of merit of n-type r-GeO$_2$ surpasses several incumbent semiconductors such as Si, SiC, GaN, and $beta$-Ga$_2$O$_3$, demonstrating its superior performance in high-power electronic devices.
Covalent amorphous semiconductors, such as amorphous silicon (a-Si) and germanium (a-Ge), are commonly believed to have localized electronic states at the top of the valence band and the bottom of the conduction band. Electrical conductivity is thoug ht to be by the hopping mechanism through localized states. The carrier mobility of these materials is usually very low, in the order of ~10^-3 - 10^-2 cm^2/(Vs) at room temperature. In this study, we present the Hall effect characterization of a-Ge prepared by self-ion implantation of Ge ions. The a-Ge prepared by this method is highly homogenous and has a mass density within 98.5% of the crystalline Ge. The material exhibits an exceptionally high electrical conductivity and carrier mobility (~100 cm^2/(Vs)) for an amorphous semiconductor. The temperature-dependent resistivity of the material is very-well defined with two distinctive regions, extrinsic and intrinsic conductivity, as in crystalline Ge. These results are direct evidence for a largely-preserved band structure and non-localized states of the valence band in a-Ge, as proposed by Tauc et al. from optical characterization alone. This finding is not only significant for the understanding of electrical conductivity in covalent disordered semiconductors, but the exceptionally high mobility we have observed in amorphous Ge opens up device applications not previously considered for amorphous semiconductors.
The development of high performance transparent conducting oxides (TCOs) is critical to many technologies from transparent electronics to solar cells. While n-type TCOs are present in many devices, current p-type TCOs are not largely commercialized a s they exhibit much lower carrier mobilities, due to the large hole effective masses of most oxides. Here, we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state of the art p-type TCOs) as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type TCOs.
Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal energetic disorder in some of the most widely studied high mobility molecular semiconductors, state-of-the-art quantum mechanical simulations of the vibrational modes and the ensuing electron phonon coupling constants are combined with experimental measurements of the low-frequency vibrations using inelastic neutron scattering and terahertz time-domain spectroscopy. In this way, the long-axis sliding motion is identified as a killer phonon mode, which in some molecules contributes more than 80% to the total thermal disorder. Based on this insight, a way to rationalize mobility trends between different materials and derive important molecular design guidelines for new high mobility molecular semiconductors is suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا