ﻻ يوجد ملخص باللغة العربية
Rutile germanium dioxide (r-GeO$_2$) is a recently predicted ultrawide-band-gap semiconductor with potential applications in high-power electronic devices, for which the carrier mobility is an important material parameter that controls the device efficiency. We apply first-principles calculations based on density functional and density functional perturbation theory to investigate carrier-phonon coupling in r-GeO$_2$ and predict its phonon-limited electron and hole mobilities as a function of temperature and crystallographic orientation. The calculated carrier mobilities at 300 K are $mu_{text{elec},perp vec{c}}$=244 cm$^2$ V$^{-1}$ s$^{-1}$, $mu_{text{elec},||vec{c}}$=377 cm$^2$ V$^{-1}$ s$^{-1}$, $mu_{text{hole},perp vec{c}}$=27 cm$^2$ V$^{-1}$ s$^{-1}$, and $mu_{text{hole},||vec{c}}$=29 cm$^2$ V$^{-1}$ s$^{-1}$. At room temperature, carrier scattering is dominated by the low-frequency polar-optical phonon modes. The predicted Baliga figure of merit of n-type r-GeO$_2$ surpasses several incumbent semiconductors such as Si, SiC, GaN, and $beta$-Ga$_2$O$_3$, demonstrating its superior performance in high-power electronic devices.
GeO$_2$ has an $alpha$-quartz-type crystal structure with a very wide fundamental band gap of 6.6 eV and is a good insulator. Here we find that the stable rutile-GeO$_2$ polymorph with a 4.6 eV band gap has a surprisingly low $sim$6.8 eV ionization p
Ultrawide-band-gap (UWBG) semiconductors are promising for fast, compact, and energy-efficient power-electronics devices. Their wider band gaps result in higher breakdown electric fields that enable high-power switching with a lower energy loss. Yet,
Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the
We discuss the key steps that have to be followed to calculate coherent quantum transport in molecular and atomic-scale systems, making emphasis on the ab-initio Gaussian Embedded Cluster Method recently developed by the authors. We present various r
The bulk photovoltaic effect (BPVE) has attracted an increasing interest due to its potential to overcome the efficiency limit of traditional photovoltaics, and much effort has been devoted to understanding its underlying physics. However, previous w