ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron and hole mobility of rutile GeO$_2$ from first principles: an ultrawide-band-gap semiconductor for power electronics

69   0   0.0 ( 0 )
 نشر من قبل Emmanouil Kioupakis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rutile germanium dioxide (r-GeO$_2$) is a recently predicted ultrawide-band-gap semiconductor with potential applications in high-power electronic devices, for which the carrier mobility is an important material parameter that controls the device efficiency. We apply first-principles calculations based on density functional and density functional perturbation theory to investigate carrier-phonon coupling in r-GeO$_2$ and predict its phonon-limited electron and hole mobilities as a function of temperature and crystallographic orientation. The calculated carrier mobilities at 300 K are $mu_{text{elec},perp vec{c}}$=244 cm$^2$ V$^{-1}$ s$^{-1}$, $mu_{text{elec},||vec{c}}$=377 cm$^2$ V$^{-1}$ s$^{-1}$, $mu_{text{hole},perp vec{c}}$=27 cm$^2$ V$^{-1}$ s$^{-1}$, and $mu_{text{hole},||vec{c}}$=29 cm$^2$ V$^{-1}$ s$^{-1}$. At room temperature, carrier scattering is dominated by the low-frequency polar-optical phonon modes. The predicted Baliga figure of merit of n-type r-GeO$_2$ surpasses several incumbent semiconductors such as Si, SiC, GaN, and $beta$-Ga$_2$O$_3$, demonstrating its superior performance in high-power electronic devices.



قيم البحث

اقرأ أيضاً

GeO$_2$ has an $alpha$-quartz-type crystal structure with a very wide fundamental band gap of 6.6 eV and is a good insulator. Here we find that the stable rutile-GeO$_2$ polymorph with a 4.6 eV band gap has a surprisingly low $sim$6.8 eV ionization p otential, as predicted from the band alignment using first-principles calculations. Because of the short O$-$O distances in the rutile structure containing cations of small effective ionic radii such as Ge$^{4+}$, the antibonding interaction between O 2p orbitals raises the valence band maximum energy level to an extent that hole doping appears feasible. Experimentally, we report the flux growth of $1.5 times 1.0 times 0.8$ mm$^3$ large rutile GeO$_2$ single crystals and confirm the thermal stability for temperatures up to $1021 pm 10~^circ$C. X-ray fluorescence spectroscopy shows the inclusion of unintentional Mo impurities from the Li$_2$O$-$MoO$_3$ flux, as well as the solubility of Ga in the r-GeO$_2$ lattice as a prospective acceptor dopant. The resistance of the Ga- and Mo-codoped r-GeO$_2$ single crystals is very high at room temperature, but it decreases by 2-3 orders of magnitude upon heating to 300 $^circ$C, which is attributed to thermally-activated p-type conduction.
Ultrawide-band-gap (UWBG) semiconductors are promising for fast, compact, and energy-efficient power-electronics devices. Their wider band gaps result in higher breakdown electric fields that enable high-power switching with a lower energy loss. Yet, the leading UWBG semiconductors suffer from intrinsic materials limitations with regards to their doping asymmetry that impedes their adoption in CMOS technology. Improvements in the ambipolar doping of UWBG materials will enable a wider range of applications in power electronics as well as deep- UV optoelectronics. These advances can be accomplished through theoretical insights on the limitations of current UWBG materials coupled with the computational prediction and experimental demonstration of alternative UWBG semiconductor materials with improved doping and transport properties. As an example, we discuss the case of rutile GeO$_2$ (r-GeO$_2$), a water-insoluble GeO$_2$ polytype which is theoretically predicted to combine an ultra-wide gap with ambipolar dopability, high carrier mobilities, and a higher thermal conductivity than b{eta}-Ga$_2$O$_3$. The subsequent realization of single-crystalline r-GeO$_2$ thin films by molecular beam epitaxy provides the opportunity to realize r-GeO$_2$ for electronic applications. Future efforts towards the predictive discovery and design of new UWBG semiconductors include advances in first-principles theory and high-performance computing software, as well as the demonstration of controlled doping in high-quality thin films with lower dislocation densities and optimized film properties.
540 - Q.L. Yang , H.X. Deng , S.H. Wei 2020
Si dominates the semiconductor industry material but possesses an abnormally low room temperature hole mobility (505 cm^2/Vs), which is four times lower than that of Diamond and Ge (2000 cm^2/Vs), two adjacent neighbours in the group IV column in the Periodic Table. In the past half-century, extensive efforts have been made to overcome the challenges of Si technology caused by low mobility in Si. However, the fundamental understanding of the underlying mechanisms remains lacking. Here, we theoretically reproduce the experimental data for conventional group IV and III-V semiconductors without involving adjustable parameters by curing the shortcoming of classical models. We uncover that the abnormally low hole mobility in Si originating from a combination of the strong interband scattering resulting from its weak spin-orbit coupling and the intensive participation of optical phonons in hole-phonon scattering. In contrast, the strong spin-orbit coupling in Ge leads to a negligible interband scattering; the strong bond and light atom mass in diamond give rise to high optical phonons frequency, preventing their participation in scattering. Based on these understandings rooted into the fundamental atomic properties, we present design principles for semiconducting materials towards high hole mobility.
We discuss the key steps that have to be followed to calculate coherent quantum transport in molecular and atomic-scale systems, making emphasis on the ab-initio Gaussian Embedded Cluster Method recently developed by the authors. We present various r esults on a simple system such as a clean Au nanocontact and the same nanocontact in the presence of hydrogen that illustrate the applicability of this method in the study and interpretation of a large range of experiments in the field of molecular electronics.
The bulk photovoltaic effect (BPVE) has attracted an increasing interest due to its potential to overcome the efficiency limit of traditional photovoltaics, and much effort has been devoted to understanding its underlying physics. However, previous w ork has shown that theoretical models of the shift current and the phonon-assisted ballistic current in real materials do not fully account for the experimental BPVE photocurrent, and so other mechanisms should be investigated in order to obtain a complete picture of BPVE. In this Letter, we demonstrate two approaches that enable the ab initio calculation of the ballistic current originating from the electron-hole interaction in semiconductors. Using BaTiO$_3$ and MoS$_2$ as two examples, we show clearly that for them the asymmetric scattering from electron-hole interaction is less appreciable than that from electron-phonon interaction, indicating more scattering processes need to be included to further improve the BPVE theory. Moreover, our approaches build up a venue for predicting and designing materials with larger ballistic current due to electron-hole interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا