ﻻ يوجد ملخص باللغة العربية
In this article, we address the challenges of transmitter-receiver isolation in emph{mobile full-duplex devices}, building on shared-antenna based transceiver architecture. Firstly, self-adaptive analog RF cancellation circuitry is required, since the capability to track time-varying self-interference coupling characteristics is of utmost importance in mobile devices. In addition, novel adaptive nonlinear DSP methods are also required for final self-interference suppression at digital baseband, since mobile-scale devices typically operate under highly nonlinear low-cost RF components. In addition to describing above kind of advanced circuit and signal processing solutions, comprehensive RF measurement results from a complete demonstrator implementation are also provided, evidencing beyond 40~dB of active RF cancellation over an 80 MHz waveform bandwidth with a highly nonlinear transmitter power amplifier. Measured examples also demonstrate the good self-healing characteristics of the developed control loop against fast changes in the coupling channel. Furthermore, when complemented with nonlinear digital cancellation processing, the residual self-interference level is pushed down to the noise floor of the demonstration system, despite the harsh nonlinear nature of the self-interference. These findings indicate that deploying the full-duplex principle can indeed be feasible also in mobile devices, and thus be one potential technology in, e.g., 5G and beyond radio systems.
Although in cellular networks full-duplex and dynamic time-division duplexing promise increased spectrum efficiency, their potential is so far challenged by increased interference. While previous studies have shown that self-interference can be suppr
Mobile traffic is projected to increase 1000 times from 2010 to 2020. This poses significant challenges on the 5th generation (5G) wireless communication system design, including network structure, air interface, key transmission schemes, multiple ac
The hybrid half-duplex/full-duplex (HD/FD) relaying scheme is an effective paradigm to overcome the negative effects of the self-interference incurred by the full-duplex (FD) mode. However, traditional hybrid HD/FD scheme does not consider the divers
We propose a new adversarial attack on frequency-hopping based wireless communication between two users, namely Alice and Bob. In this attack, the adversary, referred to as Eve, instantaneously modifies the transmitted signal by Alice before forwardi
This letter proposes a new full-duplex (FD) secrecy communication scheme for the unmanned aerial vehicle (UAV) and investigates its optimal design to achieve the maximum energy efficiency (EE) of the UAV. Specifically, the UAV receives the confidenti