ﻻ يوجد ملخص باللغة العربية
The observation that phenotypic variability is ubiquitous in isogenic populations has led to a multitude of experimental and theoretical studies seeking to probe the causes and consequences of this variability. Whether it be in the context of antibiotic treatments or exponential growth in constant environments, non-genetic variability has shown to have significant effects on population dynamics. Here, we review research that elucidates the relationship between cell-to-cell variability and population dynamics. After summarizing the relevant experimental observations, we discuss models of bet-hedging and phenotypic switching. In the context of these models, we discuss how switching between phenotypes at the single-cell level can help populations survive in uncertain environments. Next, we review more fine-grained models of phenotypic variability where the relationship between single-cell growth rates, generation times and cell sizes is explicitly considered. Variability in these traits can have significant effects on the population dynamics, even in a constant environment. We show how these effects can be highly sensitive to the underlying model assumptions. We close by discussing a number of open questions, such as how environmental and intrinsic variability interact and what the role of non-genetic variability in evolutionary dynamics is.
Biological systems are typically highly open, non-equilibrium systems that are very challenging to understand from a statistical mechanics perspective. While statistical treatments of evolutionary biological systems have a long and rich history, exam
A crop can be represented as a biotechnical system in which components are either chosen (cultivar, management) or given (soil, climate) and whose combination generates highly variable stress patterns and yield responses. Here, we used modeling and s
We propose a method that uses genetic data to test for the occurrence of a recent range expansion and to infer the location of the origin of the expansion. We introduce a statistic for pairs of populations $psi$ (the directionality index) that detect
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a popu
The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as ra