ترغب بنشر مسار تعليمي؟ اضغط هنا

The geography of recent genetic ancestry across Europe

455   0   0.0 ( 0 )
 نشر من قبل Peter Ralph
 تاريخ النشر 2012
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.



قيم البحث

اقرأ أيضاً

Recent statistical and computational analyses have shown that a genealogical most recent common ancestor (MRCA) may have lived in the recent past. However, coalescent-based approaches show that genetic most recent common ancestors for a given non-rec ombining locus are typically much more ancient. It is not immediately clear how these two perspectives interact. This paper investigates relationships between the number of descendant alleles of an ancestor allele and the number of genealogical descendants of the individual who possessed that allele for a simple diploid genetic model extending the genealogical model of Joseph Chang.
Freshwater Unionid bivalves have recently faced ecological upheaval through pollution, barriers to dispersal, human harvesting, and changes in fish-host prevalence. Currently, over 70% of species are threatened, endangered or extinct. To characterize the genetic response to these recent selective pressures, we collected population genetic data for one successful bivalve species, Megalonaias nervosa. We identify megabase sized regions that are nearly monomorphic across the population, a signal of strong, recent selection reshaping genetic diversity. These signatures of selection encompass a total of 73Mb, greater response to selection than is commonly seen in population genetic models. We observe 102 duplicate genes with high dN/dS on terminal branches among regions with sweeps, suggesting that gene duplication is a causative mechanism of recent adaptation in M. nervosa. Genes in sweeps reflect functional classes known to be important for Unionid survival, including anticoagulation genes important for fish host parasitization, detox genes, mitochondria management, and shell formation. We identify selective sweeps in regions with no known functional impacts, suggesting mechanisms of adaptation that deserve greater attention in future work on species survival. In contrast, polymorphic transposable element insertions appear to be detrimental and underrepresented among regions with sweeps. TE site frequency spectra are skewed toward singleton variants, and TEs among regions with sweeps are present only at low frequency. Our work suggests that duplicate genes are an essential source of genetic novelty that has helped this successful species succeed in environments where others have struggled. These results suggest that gene duplications deserve greater attention in non-model population genomics, especially in species that have recently faced sudden environmental challenges.
The history of southern Africa involved interactions between indigenous hunter-gatherers and a range of populations that moved into the region. Here we use genome-wide genetic data to show that there are at least two admixture events in the history o f Khoisan populations (southern African hunter-gatherers and pastoralists who speak non-Bantu languages with click consonants). One involved populations related to Niger-Congo-speaking African populations, and the other introduced ancestry most closely related to west Eurasian (European or Middle Eastern) populations. We date this latter admixture event to approximately 900-1,800 years ago, and show that it had the largest demographic impact in Khoisan populations that speak Khoe-Kwadi languages. A similar signal of west Eurasian ancestry is present throughout eastern Africa. In particular, we also find evidence for two admixture events in the history of Kenyan, Tanzanian, and Ethiopian populations, the earlier of which involved populations related to west Eurasians and which we date to approximately 2,700 - 3,300 years ago. We reconstruct the allele frequencies of the putative west Eurasian population in eastern Africa, and show that this population is a good proxy for the west Eurasian ancestry in southern Africa. The most parsimonious explanation for these findings is that west Eurasian ancestry entered southern Africa indirectly through eastern Africa.
The phenotype of any organism on earth is, in large part, the consequence of interplay between numerous gene products encoded in the genome, and such interplay between gene products affects the evolutionary fate of the genome itself through the resul ting phenotype. In this regard, contemporary genomes can be used as molecular records that reveal associations of various genes working in their natural lifestyles. By analyzing thousands of orthologs across ~600 bacterial species, we constructed a map of gene-gene co-occurrence across much of the sequenced biome. If genes preferentially co-occur in the same organisms, they were called herein correlogs; in the opposite case, called anti-correlogs. To quantify correlogy and anti-correlogy, we alleviated the contribution of indirect correlations between genes by adapting ideas developed for reverse engineering of transcriptional regulatory networks. Resultant correlogous associations are highly enriched for physically interacting proteins and for co-expressed transcripts, clearly differentiating a subgroup of functionally-obligatory protein interactions from conditional or transient interactions. Other biochemical and phylogenetic properties were also found to be reflected in correlogous and anti-correlogous relationships. Additionally, our study elucidates the global organization of the gene association map, in which various modules of correlogous genes are strikingly interconnected by anti-correlogous crosstalk between the modules. We then demonstrate the effectiveness of such associations along different domains of life and environmental microbial communities. These phylogenetic profiling approaches infer functional coupling of genes regardless of mechanistic details, and may be useful to guide exogenous gene import in synthetic biology.
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a popu lation with a deterministic reaction-- diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically , the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا