ترغب بنشر مسار تعليمي؟ اضغط هنا

Expansion under climate change: the genetic consequences

104   0   0.0 ( 0 )
 نشر من قبل Jimmy Garnier
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-- diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically , the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.



قيم البحث

اقرأ أيضاً

261 - Pierre Casadebaig 2014
A crop can be represented as a biotechnical system in which components are either chosen (cultivar, management) or given (soil, climate) and whose combination generates highly variable stress patterns and yield responses. Here, we used modeling and s imulation to predict the crop phenotypic plasticity resulting from the interaction of plant traits (G), climatic variability (E) and management actions (M). We designed two in silico experiments that compared existing and virtual sunflower cultivars (Helianthus annuus L.) in a target population of cropping environments by simulating a range of indicators of crop performance. Optimization methods were then used to search for GEM combinations that matched desired crop specifications. Computational experiments showed that the fit of particular cultivars in specific environments is gradually increasing with the knowledge of pedo-climatic conditions. At the regional scale, tuning the choice of cultivar impacted crop performance the same magnitude as the effect of yearly genetic progress made by breeding. When considering virtual genetic material, designed by recombining plant traits, cultivar choice had a greater positive impact on crop performance and stability. Results suggested that breeding for key traits conferring plant plasticity improved cultivar global adaptation capacity whereas increasing genetic diversity allowed to choose cultivars with distinctive traits that were more adapted to specific conditions. Consequently, breeding genetic material that is both plastic and diverse may improve yield stability of agricultural systems exposed to climatic variability. We argue that process-based modeling could help enhancing spatial management of cultivated genetic diversity and could be integrated in functional breeding approaches.
Understanding the causes and consequences of, and devising countermeasures to, global warming is a profoundly complex problem. Even when researchers narrow down the focus to a publishable investigation, their analysis often contains enough interactin g components to require a network visualization. Networks are thus both necessary and natural elements of climate science. Furthermore, networks form a mathematical foundation for a multitude of computational and analytical techniques. We are only beginning to see the benefits of this connection between the sciences of climate change and networks. In this review, we cover use-cases of networks in the climate-change literature -- what they represent, how they are analyzed, and what insights they bring. We also discuss network data, tools, and problems yet to be explored.
One of the first beings affected by changes in the climate are trees, one of our most vital resources. In this study tree species interaction and the response to climate in different ecological environments is observed by applying a joint species dis tribution model to different ecological domains in the United States. Joint species distribution models are useful to learn inter-species relationships and species response to the environment. The climates impact on the tree species is measured through species abundance in an area. We compare the models performance across all ecological domains and study the sensitivity of the climate variables. With the prediction of abundances, tree species populations can be predicted in the future and measure the impact of climate change on tree populations.
Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.
Mediterranean ecosystems such as those found in California, Central Chile, Southern Europe, and Southwest Australia host numerous, diverse, fire-adapted micro-ecosystems. These micro-ecosystems are as diverse as mountainous conifer to desert-like cha parral communities. Over the last few centuries, human intervention, invasive species, and climate warming have drastically affected the composition and health of Mediterranean ecosystems on almost every continent. Increased fuel load from fire suppression policies and the continued range expansion of non-native insects and plants, some driven by long-term drought, produced the deadliest wildfire season on record in 2018. As a consequence of these fires, a large number of structures are destroyed, releasing household chemicals into the environment as uncontrolled toxins. The mobilization of these materials can lead to health risks and disruption in both human and natural systems. This article identifies drivers that led to a structural weakening of the mosaic of fire-adapted ecosystems in California, and subsequently increased the risk of destructive and explosive wildfires throughout the state. Under a new climate regime, managing the impacts on systems moving out-of-phase with natural processes may protect lives and ensure the stability of ecosystem services.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا