ترغب بنشر مسار تعليمي؟ اضغط هنا

End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge Artificial Intelligence

87   0   0.0 ( 0 )
 نشر من قبل Nicolas Skatchkovsky
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a novel all-spike low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs). In the proposed system, event-driven neuromorphic sensors produce asynchronous time-encoded data streams that are encoded by an SNN, whose output spiking signals are pulse modulated via IR and transmitted over general frequence-selective channels; while the receivers inputs are obtained via hard detection of the received signals and fed to an SNN for classification. We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC). The proposed system, termed NeuroJSCC, is compared to conventional synchronous frame-based and uncoded transmissions in terms of latency and accuracy. The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.

قيم البحث

اقرأ أيضاً

With the success of deep learning, object recognition systems that can be deployed for real-world applications are becoming commonplace. However, inference that needs to largely take place on the `edge (not processed on servers), is a highly computat ional and memory intensive workload, making it intractable for low-power mobile nodes and remote security applications. To address this challenge, this paper proposes a low-power (5W) end-to-end neuromorphic framework for object tracking and classification using event-based cameras that possess desirable properties such as low power consumption (5-14 mW) and high dynamic range (120 dB). Nonetheless, unlike traditional approaches of using event-by-event processing, this work uses a mixed frame and event approach to get energy savings with high performance. Using a frame-based region proposal method based on the density of foreground events, a hardware-friendly object tracking is implemented using the apparent object velocity while tackling occlusion scenarios. For low-power classification of the tracked objects, the event camera is interfaced to IBM TrueNorth, which is time-multiplexed to tackle up to eight instances for a traffic monitoring application. The frame-based object track input is converted back to spikes for Truenorth classification via the energy efficient deep network (EEDN) pipeline. Using originally collected datasets, we train the TrueNorth model on the hardware track outputs, instead of using ground truth object locations as commonly done, and demonstrate the efficacy of our system to handle practical surveillance scenarios. Finally, we compare the proposed methodologies to state-of-the-art event-based systems for object tracking and classification, and demonstrate the use case of our neuromorphic approach for low-power applications without sacrificing on performance.
Spiking Neural Networks (SNNs) offer a promising alternative to conventional Artificial Neural Networks (ANNs) for the implementation of on-device low-power online learning and inference. On-device training is, however, constrained by the limited amo unt of data available at each device. In this paper, we propose to mitigate this problem via cooperative training through Federated Learning (FL). To this end, we introduce an online FL-based learning rule for networked on-device SNNs, which we refer to as FL-SNN. FL-SNN leverages local feedback signals within each SNN, in lieu of backpropagation, and global feedback through communication via a base station. The scheme demonstrates significant advantages over separate training and features a flexible trade-off between communication load and accuracy via the selective exchange of synaptic weights.
While Moores law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of new alternative brain-inspired computing architecture s that promise to achieve the flexibility and computational efficiency of biological neural processing systems. Within this context, neuromorphic intelligence represents a paradigm shift in computing based on the implementation of spiking neural network architectures tightly co-locating processing and memory. In this paper, we provide a comprehensive overview of the field, highlighting the different levels of granularity present in existing silicon implementations, comparing approaches that aim at replicating natural intelligence (bottom-up) versus those that aim at solving practical artificial intelligence applications (top-down), and assessing the benefits of the different circuit design styles used to achieve these goals. First, we present the analog, mixed-signal and digital circuit design styles, identifying the boundary between processing and memory through time multiplexing, in-memory computation and novel devices. Next, we highlight the key tradeoffs for each of the bottom-up and top-down approaches, survey their silicon implementations, and carry out detailed comparative analyses to extract design guidelines. Finally, we identify both necessary synergies and missing elements required to achieve a competitive advantage for neuromorphic edge computing over conventional machine-learning accelerators, and outline the key elements for a framework toward neuromorphic intelligence.
We present a novel end-to-end autoencoder-based learning for coherent optical communications using a parallelizable perturbative channel model. We jointly optimized constellation shaping and nonlinear pre-emphasis achieving mutual information gain of 0.18 bits/sym./pol. simulating 64 GBd dual-polarization single-channel transmission over 30x80 km G.652 SMF link with EDFAs.
This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supp ly voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا