ﻻ يوجد ملخص باللغة العربية
This paper introduces a novel all-spike low-power solution for remote wireless inference that is based on neuromorphic sensing, Impulse Radio (IR), and Spiking Neural Networks (SNNs). In the proposed system, event-driven neuromorphic sensors produce asynchronous time-encoded data streams that are encoded by an SNN, whose output spiking signals are pulse modulated via IR and transmitted over general frequence-selective channels; while the receivers inputs are obtained via hard detection of the received signals and fed to an SNN for classification. We introduce an end-to-end training procedure that treats the cascade of encoder, channel, and decoder as a probabilistic SNN-based autoencoder that implements Joint Source-Channel Coding (JSCC). The proposed system, termed NeuroJSCC, is compared to conventional synchronous frame-based and uncoded transmissions in terms of latency and accuracy. The experiments confirm that the proposed end-to-end neuromorphic edge architecture provides a promising framework for efficient and low-latency remote sensing, communication, and inference.
With the success of deep learning, object recognition systems that can be deployed for real-world applications are becoming commonplace. However, inference that needs to largely take place on the `edge (not processed on servers), is a highly computat
Spiking Neural Networks (SNNs) offer a promising alternative to conventional Artificial Neural Networks (ANNs) for the implementation of on-device low-power online learning and inference. On-device training is, however, constrained by the limited amo
While Moores law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of new alternative brain-inspired computing architecture
We present a novel end-to-end autoencoder-based learning for coherent optical communications using a parallelizable perturbative channel model. We jointly optimized constellation shaping and nonlinear pre-emphasis achieving mutual information gain of
This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supp