ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Neuromorphic Learning of Spiking Neural Networks for Low-Power Edge Intelligence

168   0   0.0 ( 0 )
 نشر من قبل Nicolas Skatchkovsky
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spiking Neural Networks (SNNs) offer a promising alternative to conventional Artificial Neural Networks (ANNs) for the implementation of on-device low-power online learning and inference. On-device training is, however, constrained by the limited amount of data available at each device. In this paper, we propose to mitigate this problem via cooperative training through Federated Learning (FL). To this end, we introduce an online FL-based learning rule for networked on-device SNNs, which we refer to as FL-SNN. FL-SNN leverages local feedback signals within each SNN, in lieu of backpropagation, and global feedback through communication via a base station. The scheme demonstrates significant advantages over separate training and features a flexible trade-off between communication load and accuracy via the selective exchange of synaptic weights.



قيم البحث

اقرأ أيضاً

Artificial Neural Network (ANN)-based inference on battery-powered devices can be made more energy-efficient by restricting the synaptic weights to be binary, hence eliminating the need to perform multiplications. An alternative, emerging, approach r elies on the use of Spiking Neural Networks (SNNs), biologically inspired, dynamic, event-driven models that enhance energy efficiency via the use of binary, sparse, activations. In this paper, an SNN model is introduced that combines the benefits of temporally sparse binary activations and of binary weights. Two learning rules are derived, the first based on the combination of straight-through and surrogate gradient techniques, and the second based on a Bayesian paradigm. Experiments validate the performance loss with respect to full-precision implementations, and demonstrate the advantage of the Bayesian paradigm in terms of accuracy and calibration.
As neural networks get widespread adoption in resource-constrained embedded devices, there is a growing need for low-power neural systems. Spiking Neural Networks (SNNs)are emerging to be an energy-efficient alternative to the traditional Artificial Neural Networks (ANNs) which are known to be computationally intensive. From an application perspective, as federated learning involves multiple energy-constrained devices, there is a huge scope to leverage energy efficiency provided by SNNs. Despite its importance, there has been little attention on training SNNs on a large-scale distributed system like federated learning. In this paper, we bring SNNs to a more realistic federated learning scenario. Specifically, we propose a federated learning framework for decentralized and privacy-preserving training of SNNs. To validate the proposed federated learning framework, we experimentally evaluate the advantages of SNNs on various aspects of federated learning with CIFAR10 and CIFAR100 benchmarks. We observe that SNNs outperform ANNs in terms of overall accuracy by over 15% when the data is distributed across a large number of clients in the federation while providing up to5.3x energy efficiency. In addition to efficiency, we also analyze the sensitivity of the proposed federated SNN framework to data distribution among the clients, stragglers, and gradient noise and perform a comprehensive comparison with ANNs.
Synergies between wireless communications and artificial intelligence are increasingly motivating research at the intersection of the two fields. On the one hand, the presence of more and more wirelessly connected devices, each with its own data, is driving efforts to export advances in machine learning (ML) from high performance computing facilities, where information is stored and processed in a single location, to distributed, privacy-minded, processing at the end user. On the other hand, ML can address algorithm and model deficits in the optimization of communication protocols. However, implementing ML models for learning and inference on battery-powered devices that are connected via bandwidth-constrained channels remains challenging. This paper explores two ways in which Spiking Neural Networks (SNNs) can help address these open problems. First, we discuss federated learning for the distributed training of SNNs, and then describe the integration of neuromorphic sensing, SNNs, and impulse radio technologies for low-power remote inference.
Networks of spiking neurons and Winner-Take-All spiking circuits (WTA-SNNs) can detect information encoded in spatio-temporal multi-valued events. These are described by the timing of events of interest, e.g., clicks, as well as by categorical numeri cal values assigned to each event, e.g., like or dislike. Other use cases include object recognition from data collected by neuromorphic cameras, which produce, for each pixel, signed bits at the times of sufficiently large brightness variations. Existing schemes for training WTA-SNNs are limited to rate-encoding solutions, and are hence able to detect only spatial patterns. Developing more general training algorithms for arbitrary WTA-SNNs inherits the challenges of training (binary) Spiking Neural Networks (SNNs). These amount, most notably, to the non-differentiability of threshold functions, to the recurrent behavior of spiking neural models, and to the difficulty of implementing backpropagation in neuromorphic hardware. In this paper, we develop a variational online local training rule for WTA-SNNs, referred to as VOWEL, that leverages only local pre- and post-synaptic information for visible circuits, and an additional common reward signal for hidden circuits. The method is based on probabilistic generalized linear neural models, control variates, and variational regularization. Experimental results on real-world neuromorphic datasets with multi-valued events demonstrate the advantages of WTA-SNNs over conventional binary SNNs trained with state-of-the-art methods, especially in the presence of limited computing resources.
319 - Shuai Wang , Rui Wang , Qi Hao 2020
While machine-type communication (MTC) devices generate massive data, they often cannot process this data due to limited energy and computation power. To this end, edge intelligence has been proposed, which collects distributed data and performs mach ine learning at the edge. However, this paradigm needs to maximize the learning performance instead of the communication throughput, for which the celebrated water-filling and max-min fairness algorithms become inefficient since they allocate resources merely according to the quality of wireless channels. This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model. To get insights into LCPA, an asymptotic optimal solution is derived. The solution shows that the transmit powers are inversely proportional to the channel gain, and scale exponentially with the learning parameters. Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا