ترغب بنشر مسار تعليمي؟ اضغط هنا

Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve

178   0   0.0 ( 0 )
 نشر من قبل Weicheng Kuo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Object recognition has seen significant progress in the image domain, with focus primarily on 2D perception. We propose to leverage existing large-scale datasets of 3D models to understand the underlying 3D structure of objects seen in an image by constructing a CAD-based representation of the objects and their poses. We present Mask2CAD, which jointly detects objects in real-world images and for each detected object, optimizes for the most similar CAD model and its pose. We construct a joint embedding space between the detected regions of an image corresponding to an object and 3D CAD models, enabling retrieval of CAD models for an input RGB image. This produces a clean, lightweight representation of the objects in an image; this CAD-based representation ensures a valid, efficient shape representation for applications such as content creation or interactive scenarios, and makes a step towards understanding the transformation of real-world imagery to a synthetic domain. Experiments on real-world images from Pix3D demonstrate the advantage of our approach in comparison to state of the art. To facilitate future research, we additionally propose a new image-to-3D baseline on ScanNet which features larger shape diversity, real-world occlusions, and challenging image views.

قيم البحث

اقرأ أيضاً

Instance segmentation aims to detect and segment individual objects in a scene. Most existing methods rely on precise mask annotations of every category. However, it is difficult and costly to segment objects in novel categories because a large numbe r of mask annotations is required. We introduce ShapeMask, which learns the intermediate concept of object shape to address the problem of generalization in instance segmentation to novel categories. ShapeMask starts with a bounding box detection and gradually refines it by first estimating the shape of the detected object through a collection of shape priors. Next, ShapeMask refines the coarse shape into an instance level mask by learning instance embeddings. The shape priors provide a strong cue for object-like prediction, and the instance embeddings model the instance specific appearance information. ShapeMask significantly outperforms the state-of-the-art by 6.4 and 3.8 AP when learning across categories, and obtains competitive performance in the fully supervised setting. It is also robust to inaccurate detections, decreased model capacity, and small training data. Moreover, it runs efficiently with 150ms inference time and trains within 11 hours on TPUs. With a larger backbone model, ShapeMask increases the gap with state-of-the-art to 9.4 and 6.2 AP across categories. Code will be released.
We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple feature s at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images.
408 - Soha Sadat Mahdi 2020
Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-relat ed properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on 2D Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naive Bayes-based score-fuser.
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to t rain reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
We investigate the problem of learning category-specific 3D shape reconstruction from a variable number of RGB views of previously unobserved object instances. Most approaches for multiview shape reconstruction operate on sparse shape representations , or assume a fixed number of views. We present a method that can estimate dense 3D shape, and aggregate shape across multiple and varying number of input views. Given a single input view of an object instance, we propose a representation that encodes the dense shape of the visible object surface as well as the surface behind line of sight occluded by the visible surface. When multiple input views are available, the shape representation is designed to be aggregated into a single 3D shape using an inexpensive union operation. We train a 2D CNN to learn to predict this representation from a variable number of views (1 or more). We further aggregate multiview information by using permutation equivariant layers that promote order-agnostic view information exchange at the feature level. Experiments show that our approach is able to produce dense 3D reconstructions of objects that improve in quality as more views are added.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا