ﻻ يوجد ملخص باللغة العربية
We investigate the problem of learning category-specific 3D shape reconstruction from a variable number of RGB views of previously unobserved object instances. Most approaches for multiview shape reconstruction operate on sparse shape representations, or assume a fixed number of views. We present a method that can estimate dense 3D shape, and aggregate shape across multiple and varying number of input views. Given a single input view of an object instance, we propose a representation that encodes the dense shape of the visible object surface as well as the surface behind line of sight occluded by the visible surface. When multiple input views are available, the shape representation is designed to be aggregated into a single 3D shape using an inexpensive union operation. We train a 2D CNN to learn to predict this representation from a variable number of views (1 or more). We further aggregate multiview information by using permutation equivariant layers that promote order-agnostic view information exchange at the feature level. Experiments show that our approach is able to produce dense 3D reconstructions of objects that improve in quality as more views are added.
We present StrobeNet, a method for category-level 3D reconstruction of articulating objects from one or more unposed RGB images. Reconstructing general articulating object categories % has important applications, but is challenging since objects can
Object reconstruction from a single image -- in the wild -- is a problem where we can make progress and get meaningful results today. This is the main message of this paper, which introduces an automated pipeline with pixels as inputs and 3D surfaces
Deep learning affords enormous opportunities to augment the armamentarium of biomedical imaging, albeit its design and implementation have potential flaws. Fundamentally, most deep learning models are driven entirely by data without consideration of
Object recognition has seen significant progress in the image domain, with focus primarily on 2D perception. We propose to leverage existing large-scale datasets of 3D models to understand the underlying 3D structure of objects seen in an image by co
Tomographic reconstruction recovers an unknown image given its projections from different angles. State-of-the-art methods addressing this problem assume the angles associated with the projections are known a-priori. Given this knowledge, the reconst