ﻻ يوجد ملخص باللغة العربية
A direct consequence of Gromovs theorem is that if a group has polynomial geodesic growth with respect to some finite generating set then it is virtually nilpotent. However, until now the only examples known were virtually abelian. In this note we furnish an example of a virtually 2-step nilpotent group having polynomial geodesic growth with respect to a certain finite generating set.
We show that the epimorphism problem is solvable for targets that are virtually cyclic or a product of an Abelian group and a finite group.
We study symplectic structures on nilpotent Lie algebras. Since the classification of nilpotent Lie algebras in any dimension seems to be a crazy dream, we approach this study in case of 2-step nilpotent Lie algebras (in this sub-case also, the class
We give a new proof of Gromovs theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. Unlike the original proof, it does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
We show that inductive limits of virtually nilpotent groups have strongly quasidiagonal C*-algebras, extending results of the first author on solvable virtually nilpotent groups. We use this result to show that the decomposition rank of the group C*-
We prove that any Cayley graph $G$ with degree $d$ polynomial growth does not satisfy ${f(n)}$-containment for any $f=o(n^{d-2})$. This settles the asymptotic behaviour of the firefighter problem on such graphs as it was known that $Cn^{d-2}$ firefig