ترغب بنشر مسار تعليمي؟ اضغط هنا

Strategies to reduce the environmental impact in the MRPC array of the EEE experiment

96   0   0.0 ( 0 )
 نشر من قبل Maria Paola Panetta PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Extreme Energy Events (EEE) Project employs Multi-gap Resistive Plate Chamber (MRPC) for studying the secondary cosmic ray muons in Extensive Air Showers. The array consists of about 60 tracking detectors, sparse on Italian territory and at CERN. The MRPCs are flowed with a gas mixture based on $C_2H_2F_4$ and $SF_6$, both of which are fluorinated greenhouse gases with a high environmental impact on the atmosphere. Due to the restrictions imposed by the European Union, these gases are being phased out of production and their cost is largely increasing. The EEE Collaboration started a campaign to reduce the gas emission from its array with the aim of containing costs and decreasing the experiment global warming impact. One method is to reduce the gas rate in each EEE detector. Another is to develop a gas recirculation system, whose a first prototype has been installed at one of the EEE stations located at CERN. Jointly a parallel strategy is focused on searching for environmental friendly gas mixtures which are able to substitute the standard mixture without affecting the MRPC performance. An overview and first results are presented here.



قيم البحث

اقرأ أيضاً

The Extreme Energy Events (EEE) Project is mainly devoted to the study of the secondary cosmic ray radiation by using muon tracker telescopes made of three Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a telescope network mainly distributed across Italy, hosted in different building structures pertaining to high schools, universities and research centers. Therefore, the possibility to take into account the effects of these structures on collected data is important for the large physics programme of the project. A simulation tool, based on GEANT4 and using GEMC framework, has been implemented to take into account the muon interaction with EEE telescopes and to estimate the effects on data of the structures surrounding the experimental apparata.A dedicated event generator producing realistic muon distributions, detailed geometry and microscopic behavior of MRPCs have been included to produce experimental-like data. The comparison between simulated and experimental data, and the estimation of detector resolutions is here presented and discussed.
The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using t wo independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.
Weakly Interacting Massive Particles (WIMPs) are the candidates of dark matter in our universe. Up to now any direct interaction of WIMP with nuclei has not been observed yet. The exclusion limits of the spin-independent cross section of WIMP-nucleon which have been experimentally obtained is about 10^{-7}pb at high mass region and only 10^{-5}pb} at low mass region. China Jin-Ping underground laboratory CJPL is the deepest underground lab in the world and provides a very promising environment for direct observation of dark matter. The China Dark Matter Experiment (CDEX) experiment is going to directly detect the WIMP flux with high sensitivity in the low mass region. Both CJPL and CDEX have achieved a remarkable progress in recent two years. The CDEX employs a point-contact germanium semi-conductor detector PCGe whose detection threshold is less than 300 eV. We report the measurement results of Muon flux, monitoring of radioactivity and Radon concentration carried out in CJPL, as well describe the structure and performance of the 1 kg PCGe detector CDEX-1 and 10kg detector array CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of the CDEX-1, CDEX-10 and the future CDEX-1T detectors.
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoi ls. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements.
COSINE is a dark matter search experiment based on an array of low background NaI(Tl) crystals located at the Yangyang underground laboratory. The assembly of COSINE-100 was completed in the summer of 2016 and the detector is currently collecting phy sics quality data aimed at reproducing the DAMA/LIBRA experiment that reported an annual modulation signal. Stable operation has been achieved and will continue for at least two years. Here, we describe the design of COSINE-100, including the shielding arrangement, the configuration of the NaI(Tl) crystal detection elements, the veto systems, and the associated operational systems, and we show the current performance of the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا