ترغب بنشر مسار تعليمي؟ اضغط هنا

The ArDM experiment

125   0   0.0 ( 0 )
 نشر من قبل Ma{\\l}gorzata Hara\\'nczyk
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.



قيم البحث

اقرأ أيضاً

The ArDM experiment completed a single-phase commissioning run in 2015 with an active liquid argon target of nearly one tonne in mass. The analysis of the data and comparison to simulations allowed for a test of the crucial detector properties and co nfirmed the low background performance of the setup. The statistical rejection power for electron recoil events using the pulse shape discrimination method was estimated using data from a Cf-252 neutron calibration source. Electron and nuclear recoil band profiles were found to be well described by Gaussian distributions. Employing such a model we derive values for the electron recoil statistical rejection power of more than 10$^8$ in the tonne-scale liquid argon target for events with more than 50 detected photons at a 50% acceptance for nuclear recoils. The Rn-222 emanation rate of the ArDM cryostat at room temperature was found to be 65.6$pm$0.4 $mu$Hz/l, and the Ar-39 specific activity from the employed atmospheric argon to be 0.95$pm$0.05 Bq/kg. The cosmic muon flux at the Canfranc underground site was determined to be between 2 and 3.5$times 10^{-3}m^{2}s^{-1}$ . These results pave the way for the next physics run of ArDM in the double-phase operational mode.
The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an activ e target of 850 kg, ArDM represents an important milestone in the quest for Dark Matter with LAr. We present the experimental apparatus currently installed underground at the Laboratorio Subterraneo de Canfranc (LSC), Spain. We show first data recorded during a single-phase commissioning run in 2015 (ArDM Run I), which overall confirm the good and stable performance of the ton-scale LAr detector.
ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC ( Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.
Weakly Interacting Massive Particles (WIMPs) are the candidates of dark matter in our universe. Up to now any direct interaction of WIMP with nuclei has not been observed yet. The exclusion limits of the spin-independent cross section of WIMP-nucleon which have been experimentally obtained is about 10^{-7}pb at high mass region and only 10^{-5}pb} at low mass region. China Jin-Ping underground laboratory CJPL is the deepest underground lab in the world and provides a very promising environment for direct observation of dark matter. The China Dark Matter Experiment (CDEX) experiment is going to directly detect the WIMP flux with high sensitivity in the low mass region. Both CJPL and CDEX have achieved a remarkable progress in recent two years. The CDEX employs a point-contact germanium semi-conductor detector PCGe whose detection threshold is less than 300 eV. We report the measurement results of Muon flux, monitoring of radioactivity and Radon concentration carried out in CJPL, as well describe the structure and performance of the 1 kg PCGe detector CDEX-1 and 10kg detector array CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of the CDEX-1, CDEX-10 and the future CDEX-1T detectors.
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoi ls. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا