ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial Performance of the COSINE-100 Experiment

256   0   0.0 ( 0 )
 نشر من قبل Chang Hyon Ha
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

COSINE is a dark matter search experiment based on an array of low background NaI(Tl) crystals located at the Yangyang underground laboratory. The assembly of COSINE-100 was completed in the summer of 2016 and the detector is currently collecting physics quality data aimed at reproducing the DAMA/LIBRA experiment that reported an annual modulation signal. Stable operation has been achieved and will continue for at least two years. Here, we describe the design of COSINE-100, including the shielding arrangement, the configuration of the NaI(Tl) crystal detection elements, the veto systems, and the associated operational systems, and we show the current performance of the experiment.

قيم البحث

اقرأ أيضاً

The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It is used to detect cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance test of each module have been performed at a ground laboratory. The installation of the detector in Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 $pm$ 1(stat.)$pm$ 10(syst.) muons/m$^2$/day. In this report, the assembly of the muon detector and the results from the analysis are presented.
COSINE-100 is a dark matter direct detection experiment designed to test the annual modulation signal observed by the DAMA/LIBRA experiment. COSINE-100 consists of 8 NaI(Tl) crystals with a total mass of 106 kg, a 2200 L liquid scintillator veto, and 37 muon detector panels. We present details of the data acquisition system of COSINE-100, including waveform storage using flash analog-to-digital converters for crystal events and integrated charge storage using charge-sensitive analog-to-digital converters for liquid scintillator and plastic scintillator muon veto events. We also discuss several trigger conditions developed in order to distinguish signal events from photomultiplier noise events. The total trigger rate observed for the crystal/liquid scintillator (plastic scintillator) detector is 15 Hz (24 Hz).
This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200~L of linear alkylbenzene-based liquid scintillator. Th e liquid scintillator tags between 65 and 75% of the internal $^{40}$K background in the 2--6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold.
410 - B.J. Park , J.J. Choe , J.S. Choi 2020
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-1 00 experiment has been operating with 106~kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61$-$0.78 kg) thallium-doped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.
COSINE-200 is the next phase of the ongoing COSINE-100 experiment. The main purpose of the experiment is the performance of an unambiguous verification of the annual modulation signals observed by the DAMA experiment. The success of the experiment cr itically depends on the production of a 200 kg array of ultra-pure NaI(Tl) crystal detectors that have lower backgrounds than the DAMA crystals. The purification of raw powder is the initial but important step toward the production of ultra-pure NaI(Tl) detectors. We have already demonstrated that fractional recrystallization from water solutions is an effective method for the removal of the problematic K and Pb elements. For the mass production of purified powder, a clean facility for the fractional recrystallization had been constructed at the Institute for Basic Science (IBS), Korea. Here, we report the design of the purification process, material recovery, and performance of the NaI powder purification facility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا