ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel Minority Game and its application in movement optimization during an epidemic

88   0   0.0 ( 0 )
 نشر من قبل Soumyajyoti Biswas
 تاريخ النشر 2020
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a version of the Minority Game where the total number of available choices is $D>2$, but the agents only have two available choices to switch. For all agents at an instant in any given choice, therefore, the other choice is distributed between the remaining $D-1$ options. This brings in the added complexity in reaching a state with the maximum resource utilization, in the sense that the game is essentially a set of MG that are coupled and played in parallel. We show that a stochastic strategy, used in the MG, works well here too. We discuss the limits in which the model reduces to other known models. Finally, we study an application of the model in the context of population movement between various states within a country during an ongoing epidemic. We show that the total infected population in the country could be as low as that achieved with a complete stoppage of inter-region movements for a prolonged period, provided that the agents instead follow the above mentioned stochastic strategy for their movement decisions between their two choices. The objective for an agent is to stay in the lower infected state between their two choices. We further show that it is the agents moving once between any two states, following the stochastic strategy, who are less likely to be infected than those not having (or not opting for) such a movement choice, when the risk of getting infected during the travel is not considered. This shows the incentive for the moving agents to follow the stochastic strategy.

قيم البحث

اقرأ أيضاً

In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results s how that such coupled dynamics exhibits a myriad of phenomena such as nonequilibrium transitions accompanied by bistability. Besides we observe the emergence of an intermediate optimal segregation level where the community structure enhances negative opinions over vaccination but counterintuitively hinders - rather than favoring - the global disease spreading. Thus, our results hint vaccination campaigns should avoid policies that end up segregating excessively anti-vaccine groups so that they effectively work as echo chambers in which individuals look to confirmation without jeopardising the safety of the whole population.
Assessing and managing the impact of large-scale epidemics considering only the individual risk and severity of the disease is exceedingly difficult and could be extremely expensive. Economic consequences, infrastructure and service disruption, as we ll as the recovery speed, are just a few of the many dimensions along which to quantify the effect of an epidemic on societys fabric. Here, we extend the concept of resilience to characterize epidemics in structured populations, by defining the system-wide critical functionality that combines an individuals risk of getting the disease (disease attack rate) and the disruption to the systems functionality (human mobility deterioration). By studying both conceptual and data-driven models, we show that the integrated consideration of individual risks and societal disruptions under resilience assessment framework provides an insightful picture of how an epidemic might impact society. In particular, containment interventions intended for a straightforward reduction of the risk may have net negative impact on the system by slowing down the recovery of basic societal functions. The presented study operationalizes the resilience framework, providing a more nuanced and comprehensive approach for optimizing containment schemes and mitigation policies in the case of epidemic outbreaks.
We propose a new model of minority game with so-called smart agents such that the standard deviation and the total loss in this model reach the theoretical minimum values in the limit of long time. The smart agents use trail and error method to make a choice but bring global optimization to the system, which suggests that the economic systems may have the ability to self-organize into a highly optimized state by agents who are forced to make decisions based on inductive thinking for their limited knowledge and capabilities. When other kinds of agents are also present, the experimental results and analyses show that the smart agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority game.
Mumbai, amongst the most densely populated cities in the world, has witnessed the fourth largest number of cases and the largest number of deaths among all the cities in India (as of 28th October 2020). Along with the rest of India, lockdowns (of var ying degrees) have been in effect in Mumbai since March 25, 2020. Given the large economic toll on the country from the lockdown and the related restrictions on mobility of people and goods, swift opening of the economy especially in a financial hub such as Mumbai becomes critical. In this report, we use the IISc-TIFR agent based simulator to develop long term projections for Mumbai under realistic scenarios related to Mumbais opening of the workplaces, or equivalently, the economy, and the associated public transportation through local trains and buses. These projections were developed taking into account a possible second wave if the economy and the local trains are fully opened either on November 1, 2020 or on January 1, 2021. The impact on infection spread in Mumbai if the schools and colleges open on January first week 2021 is also considered. We also try to account for the increased intermingling amongst the population during the Ganeshotsav festival as well as around the Navratri/Dussehra and Diwali festival. Our conclusion, based on our simulations, is that the impact of fully opening up the economy on November 1 is manageable provided reasonable medical infrastructure is in place. Further, schools and colleges opening in January do not lead to excessive increase in infections. The report also explores the relative effectiveness of contact tracing vs containment zones, and also includes very rudimentary results of the effect of vaccinating the elderly population in February 2021.
213 - Shogo Mizutaka , Kizashi Mori , 2021
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network w ith tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model, which accurately describe the synergistic SIS dynamics. We quantitatively confirm all qualitative predictions of the mean-field treatment in numerical evaluations of the approximate master equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا