ﻻ يوجد ملخص باللغة العربية
Heavy-heavy-light-light (HHLL) correlators of pairwise identical scalars in CFTs with a large central charge in any number of dimensions admit a double scaling limit where the ratio of the heavy conformal dimension to the central charge becomes large as the separation between the light operators becomes null. In this limit the stress tensor sector of a generic HHLL correlator receives contributions from the multi stress tensor operators with any number of stress tensors, as long as their twist is not increased by index contractions. We show how one can compute this leading twist stress tensor sector when the conformal dimension of the light operators is large and the stress tensor sector approximates the thermal CFT correlator. In this regime the value of the correlator is related to the length of the spacelike geodesic which approaches the boundary of the dual asymptotically AdS spacetime at the points of light operator insertions. We provide a detailed description of the infinite volume limit. In two spacetime dimensions the HHLL Virasoro vacuum block is reproduced, while in four spacetime dimensions the result is written in terms of elliptic integrals.
We argue that a $SO(d)$ magnetic monopole in an asymptotically AdS space-time is dual to a $d$-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration $solidon$. In the pr
We present a factorized decomposition of 4-point scalar conformal blocks near the lightcone, which applies to arbitrary intermediate spin and general spacetime dimensions. Then we discuss the systematic expansion in large intermediate spin and the re
We present new closed-form expressions for 4-point scalar conformal blocks in the s- and t-channel lightcone expansions. Our formulae apply to intermediate operators of arbitrary spin in general dimensions. For physical spin $ell$, they are composed
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector
We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p leq 4, including the case of fundamental string solutions, is conformal to AdS_{p+2} x S^{8-p} with