ﻻ يوجد ملخص باللغة العربية
We present a factorized decomposition of 4-point scalar conformal blocks near the lightcone, which applies to arbitrary intermediate spin and general spacetime dimensions. Then we discuss the systematic expansion in large intermediate spin and the resummations of the large-spin tails of Regge trajectories. The basic integrals for the Lorentzian inversion are given by Wilson functions.
We present new closed-form expressions for 4-point scalar conformal blocks in the s- and t-channel lightcone expansions. Our formulae apply to intermediate operators of arbitrary spin in general dimensions. For physical spin $ell$, they are composed
We study large $c$ conformal blocks outside the known limits. This work seems to be hard, but it is possible numerically by using the Zamolodchikov recursion relation. As a result, we find new some properties of large $c$ conformal blocks with a pair
We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of $log t$ term. Our analysis covers the ent
For conformal field theories in arbitrary dimensions, we introduce a method to derive the conformal blocks corresponding to the exchange of a traceless symmetric tensor appearing in four point functions of operators with spin. Using the embedding spa
We give a simple iterative procedure to compute the classical conformal blocks on the sphere to all order in the modulus.