ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformal solids and holography

125   0   0.0 ( 0 )
 نشر من قبل Sebastian Garcia-Saenz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that a $SO(d)$ magnetic monopole in an asymptotically AdS space-time is dual to a $d$-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration $solidon$. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary$-$the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.



قيم البحث

اقرأ أيضاً

We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a `partially massless response. The on-shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair.
We study nonequilibrium steady states in a holographic superconductor under time periodic driving by an external rotating electric field. We obtain the dynamical phase diagram. Superconducting phase transition is of first or second order depending on the amplitude and frequency of the external source. The rotating electric field decreases the superconducting transition temperature. The system can also exhibit a first order transition inside the superconducting phase. It is suggested this transition exists all the way down to zero temperature. The existence of nonequilibrium thermodynamic potential for such steady solutions is also discussed from the holographic point of view. The current induced by the electric field is decomposed into normal and superconducting components, and this makes it clear that the superconducting one dominates in low temperatures.
125 - Andrei Parnachev 2020
Heavy-heavy-light-light (HHLL) correlators of pairwise identical scalars in CFTs with a large central charge in any number of dimensions admit a double scaling limit where the ratio of the heavy conformal dimension to the central charge becomes large as the separation between the light operators becomes null. In this limit the stress tensor sector of a generic HHLL correlator receives contributions from the multi stress tensor operators with any number of stress tensors, as long as their twist is not increased by index contractions. We show how one can compute this leading twist stress tensor sector when the conformal dimension of the light operators is large and the stress tensor sector approximates the thermal CFT correlator. In this regime the value of the correlator is related to the length of the spacelike geodesic which approaches the boundary of the dual asymptotically AdS spacetime at the points of light operator insertions. We provide a detailed description of the infinite volume limit. In two spacetime dimensions the HHLL Virasoro vacuum block is reproduced, while in four spacetime dimensions the result is written in terms of elliptic integrals.
95 - Yan Liu , Ya-Wen Sun 2020
We study topological gapless modes in relativistic hydrodynamics by weakly breaking the conservation of energy momentum tensor. Several systems have been found to have topologically nontrivial crossing nodes in the spectrum of hydrodynamic modes and some of them are only topologically nontrivial with the protection of certain spacetime symmetries. The nontrivial topology for all these systems is further confirmed from the existence of undetermined Berry phases. Associated transport properties and second order effects have also been studied for these systems. The non-conservation terms of the energy momentum tensor could come from an external effective symmetric tensor matter field or a gravitational field which could be generated by a specific coordinate transformation from the flat spacetime. Finally we introduce a possible holographic realization of one of these systems. We propose a new method to calculate the holographic Ward identities for the energy momentum tensor without calculating out all components of the Green functions and match the Ward identities of both sides.
We propose a new duality relation between codimension two space-like surfaces in gravitational theories and quantum states in dual Hilbert spaces. This surface/state correspondence largely generalizes the idea of holography such that we do not need t o rely on any existence of boundaries in gravitational spacetimes. The present idea is motivated by the recent interpretation of AdS/CFT in terms of the tensor networks so called MERA. Moreover, we study this correspondence from the viewpoint of entanglement entropy and information metric. The Cramer-Rao bound in quantum estimation theory implies that the quantum fluctuations of radial coordinate of the AdS is highly suppressed in the large N limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا