ﻻ يوجد ملخص باللغة العربية
The effects of quantization and coding on the estimation quality of a Gauss-Markov, namely Ornstein-Uhlenbeck, process are considered. Samples are acquired from the process, quantized, and then encoded for transmission using either infinite incremental redundancy or fixed redundancy coding schemes. A fixed processing time is consumed at the receiver for decoding and sending feedback to the transmitter. Decoded messages are used to construct a minimum mean square error (MMSE) estimate of the process as a function of time. This is shown to be an increasing functional of the age-of-information, defined as the time elapsed since the sampling time pertaining to the latest successfully decoded message. Such (age-penalty) functional depends on the quantization bits, codeword lengths and receiver processing time. The goal, for each coding scheme, is to optimize sampling times such that the long term average MMSE is minimized. This is then characterized in the setting of general increasing age-penalty functionals, not necessarily corresponding to MMSE, which may be of independent interest in other contexts.
The effects of quantization and coding on the estimation quality of Gauss-Markov processes are considered, with a special attention to the Ornstein-Uhlenbeck process. Samples are acquired from the process, quantized, and then encoded for transmission
We consider two closely related problems: anomaly detection in sensor networks and testing for infections in human populations. In both problems, we have $n$ nodes (sensors, humans), and each node exhibits an event of interest (anomaly, infection) wi
We consider a status update system in which the update packets need to be processed to extract the embedded useful information. The source node sends the acquired information to a computation unit (CU) which consists of a master node and $n$ worker n
We consider a system in which an information source generates independent and identically distributed status update packets from an observed phenomenon that takes $n$ possible values based on a given pmf. These update packets are encoded at the trans
A status updating system is considered in which data from multiple sources are sampled by an energy harvesting sensor and transmitted to a remote destination through an erasure channel. The goal is to deliver status updates of all sources in a timely