ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Selective Encoding for Timely Updates

107   0   0.0 ( 0 )
 نشر من قبل Melih Bastopcu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a system in which an information source generates independent and identically distributed status update packets from an observed phenomenon that takes $n$ possible values based on a given pmf. These update packets are encoded at the transmitter node to be sent to the receiver node. Instead of encoding all $n$ possible realizations, the transmitter node only encodes the most probable $k$ realizations and disregards whenever a realization from the remaining $n-k$ values occurs. We find the average age and determine the age-optimal real codeword lengths such that the average age at the receiver node is minimized. Through numerical evaluations for arbitrary pmfs, we show that this selective encoding policy results in a lower average age than encoding every realization and find the age-optimal $k$. We also analyze a randomized selective encoding policy in which the remaining $n-k$ realizations are encoded and sent with a certain probability to further inform the receiver at the expense of longer codewords for the selected $k$ realizations.



قيم البحث

اقرأ أيضاً

An information source generates independent and identically distributed status update messages from an observed random phenomenon which takes $n$ distinct values based on a given pmf. These update packets are encoded at the transmitter node to be sen t to a receiver node which wants to track the observed random variable with as little age as possible. The transmitter node implements a selective $k$ encoding policy such that rather than encoding all possible $n$ realizations, the transmitter node encodes the most probable $k$ realizations. We consider three different policies regarding the remaining $n-k$ less probable realizations: $highest$ $k$ $selective$ $encoding$ which disregards whenever a realization from the remaining $n-k$ values occurs; $randomized$ $selective$ $encoding$ which encodes and sends the remaining $n-k$ realizations with a certain probability to further inform the receiver node at the expense of longer codewords for the selected $k$ realizations; and $highest$ $k$ $selective$ $encoding$ $with$ $an$ $empty$ $symbol$ which sends a designated empty symbol when one of the remaining $n-k$ realizations occurs. For all of these three encoding schemes, we find the average age and determine the age-optimal real codeword lengths, including the codeword length for the empty symbol in the case of the latter scheme, such that the average age at the receiver node is minimized. Through numerical evaluations for arbitrary pmfs, we show that these selective encoding policies result in a lower average age than encoding every realization, and find the corresponding age-optimal $k$ values.
We consider two closely related problems: anomaly detection in sensor networks and testing for infections in human populations. In both problems, we have $n$ nodes (sensors, humans), and each node exhibits an event of interest (anomaly, infection) wi th probability $p$. We want to keep track of the anomaly/infection status of all nodes at a central location. We develop a $group$ $updating$ scheme, akin to group testing, which updates a central location about the status of each member of the population by appropriately grouping their individual status. Unlike group testing, which uses the expected number of tests as a metric, in group updating, we use the expected age of information at the central location as a metric. We determine the optimal group size to minimize the age of information. We show that, when $p$ is small, the proposed group updating policy yields smaller age compared to a sequential updating policy.
We consider an information updating system where a source produces updates as requested by a transmitter. The transmitter further processes these updates in order to generate $partial$ $updates$, which have smaller information compared to the origina l updates, to be sent to a receiver. We study the problem of generating partial updates, and finding their corresponding real-valued codeword lengths, in order to minimize the average age experienced by the receiver, while maintaining a desired level of mutual information between the original and partial updates. This problem is NP hard. We relax the problem and develop an alternating minimization based iterative algorithm that generates a pmf for the partial updates, and the corresponding age-optimal real-valued codeword length for each update. We observe that there is a tradeoff between the attained average age and the mutual information between the original and partial updates.
We consider a status update system in which the update packets need to be processed to extract the embedded useful information. The source node sends the acquired information to a computation unit (CU) which consists of a master node and $n$ worker n odes. The master node distributes the received computation task to the worker nodes. Upon computation, the master node aggregates the results and sends them back to the source node to keep it emph{updated}. We investigate the age performance of uncoded and coded (repetition coded, MDS coded, and multi-message MDS (MM-MDS) coded) schemes in the presence of stragglers under i.i.d.~exponential transmission delays and i.i.d~shifted exponential computation times. We show that asymptotically MM-MDS coded scheme outperforms the other schemes. Furthermore, we characterize the optimal codes such that the average age is minimized.
The effects of quantization and coding on the estimation quality of a Gauss-Markov, namely Ornstein-Uhlenbeck, process are considered. Samples are acquired from the process, quantized, and then encoded for transmission using either infinite increment al redundancy or fixed redundancy coding schemes. A fixed processing time is consumed at the receiver for decoding and sending feedback to the transmitter. Decoded messages are used to construct a minimum mean square error (MMSE) estimate of the process as a function of time. This is shown to be an increasing functional of the age-of-information, defined as the time elapsed since the sampling time pertaining to the latest successfully decoded message. Such (age-penalty) functional depends on the quantization bits, codeword lengths and receiver processing time. The goal, for each coding scheme, is to optimize sampling times such that the long term average MMSE is minimized. This is then characterized in the setting of general increasing age-penalty functionals, not necessarily corresponding to MMSE, which may be of independent interest in other contexts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا