ترغب بنشر مسار تعليمي؟ اضغط هنا

Timely Status Updating Over Erasure Channels Using an Energy Harvesting Sensor: Single and Multiple Sources

262   0   0.0 ( 0 )
 نشر من قبل Ahmed Arafa
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A status updating system is considered in which data from multiple sources are sampled by an energy harvesting sensor and transmitted to a remote destination through an erasure channel. The goal is to deliver status updates of all sources in a timely manner, such that the cumulative long-term average age-of-information (AoI) is minimized. The AoI for each source is defined as the time elapsed since the generation time of the latest successful status update received at the destination from that source. Transmissions are subject to energy availability, which arrives in units according to a Poisson process, with each energy unit capable of carrying out one transmission from only one source. The sensor is equipped with a unit-sized battery to save the incoming energy. A scheduling policy is designed in order to determine which source is sampled using the available energy. The problem is studied in two main settings: no erasure status feedback, and perfect instantaneous feedback.



قيم البحث

اقرأ أيضاً

A status updating system is considered in which multiple data sources generate packets to be delivered to a destination through a shared energy harvesting sensor. Only one sources data, when available, can be transmitted by the sensor at a time, subj ect to energy availability. Transmissions are prune to erasures, and each successful transmission constitutes a status update for its corresponding source at the destination. The goal is to schedule source transmissions such that the collective long-term average age-of-information (AoI) is minimized. AoI is defined as the time elapsed since the latest successfully-received data has been generated at its source. To solve this problem, the case with a single source is first considered, with a focus on threshold waiting policies, in which the sensor attempts transmission only if the time until both energy and data are available grows above a certain threshold. The distribution of the AoI is fully characterized under such a policy. This is then used to analyze the performance of the multiple sources case under maximum-age-first scheduling, in which the sensors resources are dedicated to the source with the maximum AoI at any given time. The achievable collective long-term average AoI is derived in closed-form. Multiple numerical evaluations are demonstrated to show how the optimal threshold value behaves as a function of the system parameters, and showcase the benefits of a threshold-based waiting policy with intermittent energy and data arrivals.
We consider two closely related problems: anomaly detection in sensor networks and testing for infections in human populations. In both problems, we have $n$ nodes (sensors, humans), and each node exhibits an event of interest (anomaly, infection) wi th probability $p$. We want to keep track of the anomaly/infection status of all nodes at a central location. We develop a $group$ $updating$ scheme, akin to group testing, which updates a central location about the status of each member of the population by appropriately grouping their individual status. Unlike group testing, which uses the expected number of tests as a metric, in group updating, we use the expected age of information at the central location as a metric. We determine the optimal group size to minimize the age of information. We show that, when $p$ is small, the proposed group updating policy yields smaller age compared to a sequential updating policy.
The effects of quantization and coding on the estimation quality of Gauss-Markov processes are considered, with a special attention to the Ornstein-Uhlenbeck process. Samples are acquired from the process, quantized, and then encoded for transmission using either infinite incremental redundancy (IIR) or fixed redundancy (FR) coding schemes. A fixed processing time is consumed at the receiver for decoding and sending feedback to the transmitter. Decoded messages are used to construct a minimum mean square error (MMSE) estimate of the process as a function of time. This is shown to be an increasing functional of the age-of-information (AoI), defined as the time elapsed since the sampling time pertaining to the latest successfully decoded message. Such functional depends on the quantization bits, codewords lengths and receiver processing time. The goal, for each coding scheme, is to optimize sampling times such that the long-term average MMSE is minimized. This is then characterized in the setting of general increasing functionals of AoI, not necessarily corresponding to MMSE, which may be of independent interest in other contexts. We first show that the optimal sampling policy for IIR is such that a new sample is generated only if the AoI exceeds a certain threshold, while for FR it is such that a new sample is delivered just-in-time as the receiver finishes processing the previous one. Enhanced transmissions schemes are then developed in order to exploit the processing times to make new data available at the receiver sooner. For both IIR and FR, it is shown that there exists an optimal number of quantization bits that balances AoI and quantization errors, and hence minimizes the MMSE. It is also shown that for longer receiver processing times, the relatively simpler FR scheme outperforms IIR.
The effects of quantization and coding on the estimation quality of a Gauss-Markov, namely Ornstein-Uhlenbeck, process are considered. Samples are acquired from the process, quantized, and then encoded for transmission using either infinite increment al redundancy or fixed redundancy coding schemes. A fixed processing time is consumed at the receiver for decoding and sending feedback to the transmitter. Decoded messages are used to construct a minimum mean square error (MMSE) estimate of the process as a function of time. This is shown to be an increasing functional of the age-of-information, defined as the time elapsed since the sampling time pertaining to the latest successfully decoded message. Such (age-penalty) functional depends on the quantization bits, codeword lengths and receiver processing time. The goal, for each coding scheme, is to optimize sampling times such that the long term average MMSE is minimized. This is then characterized in the setting of general increasing age-penalty functionals, not necessarily corresponding to MMSE, which may be of independent interest in other contexts.
We consider an energy harvesting source equipped with a finite battery, which needs to send timely status updates to a remote destination. The timeliness of status updates is measured by a non-decreasing penalty function of the Age of Information (Ao I). The problem is to find a policy for generating updates that achieves the lowest possible time-average expected age penalty among all online policies. We prove that one optimal solution of this problem is a monotone threshold policy, which satisfies (i) each new update is sent out only when the age is higher than a threshold and (ii) the threshold is a non-increasing function of the instantaneous battery level. Let $tau_B$ denote the optimal threshold corresponding to the full battery level $B$, and $p(cdot)$ denote the age-penalty function, then we can show that $p(tau_B)$ is equal to the optimum objective value, i.e., the minimum achievable time-average expected age penalty. These structural properties are used to develop an algorithm to compute the optimal thresholds. Our numerical analysis indicates that the improvement in average age with added battery capacity is largest at small battery sizes; specifically, more than half the total possible reduction in age is attained when battery storage increases from one transmissions worth of energy to two. This encourages further study of status update policies for sensors with small battery storage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا