ﻻ يوجد ملخص باللغة العربية
We give an existence proof for variational solutions $u$ associated to the total variation flow. Here, the functions being considered are defined on a metric measure space $(mathcal{X}, d, mu)$ satisfying a doubling condition and supporting a Poincare inequality. For such parabolic minimizers that coincide with a time-independent Cauchy-Dirichlet datum $u_0$ on the parabolic boundary of a space-time-cylinder $Omega times (0, T)$ with $Omega subset mathcal{X}$ an open set and $T > 0$, we prove existence in the weak parabolic function space $L^1_w(0, T; mathrm{BV}(Omega))$. In this paper, we generalize results from a previous work by Bogelein, Duzaar and Marcellini by introducing a more abstract notion for $mathrm{BV}$-valued parabolic function spaces. We argue completely on a variational level.
In this note we consider problems related to parabolic partial differential equations in geodesic metric measure spaces, that are equipped with a doubling measure and a Poincare inequality. We prove a location and scale invariant Harnack inequality f
In this paper we study the Total Variation Flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution probl
Let (X j , d j , $mu$ j), j = 0, 1,. .. , m be metric measure spaces. Given 0 < p $kappa$ $le$ $infty$ for $kappa$ = 1,. .. , m and an analytic family of multilinear operators T z : L p 1 (X 1) x $bullet$ $bullet$ $bullet$ L p m (X m) $rightarrow$ L
In this paper, we will prove the Weyls law for the asymptotic formula of Dirichlet eigenvalues on metric measure spaces with generalized Ricci curvature bounded from below.
This paper proves the strong parabolic Harnack inequality for local weak solutions to the heat equation associated with time-dependent (nonsymmetric) bilinear forms. The underlying metric measure Dirichlet space is assumed to satisfy the volume doubl