ﻻ يوجد ملخص باللغة العربية
This paper proves the strong parabolic Harnack inequality for local weak solutions to the heat equation associated with time-dependent (nonsymmetric) bilinear forms. The underlying metric measure Dirichlet space is assumed to satisfy the volume doubling condition, the strong Poincare inequality, and a cutoff Sobolev inequality. The metric is not required to be geodesic. Further results include a weighted Poincare inequality, as well as upper and lower bounds for non-symmetric heat kernels.
In this note we consider problems related to parabolic partial differential equations in geodesic metric measure spaces, that are equipped with a doubling measure and a Poincare inequality. We prove a location and scale invariant Harnack inequality f
In the context of a metric measure Dirichlet space satisfying volume doubling and Poincare inequality, we prove the parabolic Harnack inequality for weak solutions of the heat equation associated with local nonsymmetric bilinear forms. In particular,
We prove a scale-invariant boundary Harnack principle for inner uni- form domains in metric measure Dirichlet spaces. We assume that the Dirichlet form is symmetric, strongly local, regular, and that the volume doubling property and two-sided sub-Gau
We consider a general class of metric measure spaces equipped with a regular Dirichlet form and then provide a lower bound on the hitting time probabilities of the associated Hunt process. Using these estimates we establish (i) a generalization of th
We consider second-order linear parabolic operators in non-divergence form that are intrinsically defined on Riemannian manifolds. In the elliptic case, Cabre proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional c