ترغب بنشر مسار تعليمي؟ اضغط هنا

The Total Variation Flow in Metric Random Walk Spaces

111   0   0.0 ( 0 )
 نشر من قبل Jose M. Maz\\'on
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the Total Variation Flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic behaviour of those solutions and, with that aim in view, we establish some inequalities of Poincar{e} type. In particular, for finite weighted connected graphs, we show that the solutions reach the average of the initial data in finite time. Furthermore, we introduce the concepts of perimeter and mean curvature for subsets of a metric random walk space and we study the relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize calibrability by using the $1$-Laplacian operator. Finally, we study the eigenvalue problem whereby we give a method to solve the optimal Cheeger cut problem.



قيم البحث

اقرأ أيضاً

We give an existence proof for variational solutions $u$ associated to the total variation flow. Here, the functions being considered are defined on a metric measure space $(mathcal{X}, d, mu)$ satisfying a doubling condition and supporting a Poincar e inequality. For such parabolic minimizers that coincide with a time-independent Cauchy-Dirichlet datum $u_0$ on the parabolic boundary of a space-time-cylinder $Omega times (0, T)$ with $Omega subset mathcal{X}$ an open set and $T > 0$, we prove existence in the weak parabolic function space $L^1_w(0, T; mathrm{BV}(Omega))$. In this paper, we generalize results from a previous work by Bogelein, Duzaar and Marcellini by introducing a more abstract notion for $mathrm{BV}$-valued parabolic function spaces. We argue completely on a variational level.
In this paper we study the $(BV,L^p)$-decomposition, $p=1,2$, of functions in metric random walk spaces, a general workspace that includes weighted graphs and nonlocal models used in image processing. We obtain the Euler-Lagrange equations of the cor responding variational problems and their gradient flows. In the case $p=1$ we also study the associated geometric problem and the thresholding parameters.
We study the JKO scheme for the total variation, characterize the optimizers, prove some of their qualitative properties (in particular a form of maximum principle and in some cases, a minimum principle as well). Finally, we establish a convergence r esult as the time step goes to zero to a solution of a fourth-order nonlinear evolution equation, under the additional assumption that the density remains bounded away from zero. This lower bound is shown in dimension one and in the radially symmetric case.
We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion of curves of maximal slope, we introduce the latter to include limits of time-incremental approximations constructed via the Minimizing Movements approach. For both notions of solutions we prove the existence of the global attractor. Since the evolutionary problems we consider may lack uniqueness, we rely on the theory of generalized semiflows introduced by J.M. Ball. The notions of generalized and energy solutions are quite flexible and can be used to address gradient flows in a variety of contexts, ranging from Banach spaces to Wasserstein spaces of probability measures. We present applications of our abstract results by proving the existence of the global attractor for the energy solutions both of abstract doubly nonlinear evolution equations in reflexive Banach spaces, and of a class of evolution equations in Wasserstein spaces, as well as for the generalized solutions of some phase-change evolutions driven by mean curvature.
We provide new characterizations of Sobolev ad BV spaces in doubling and Poincare metric spaces in the spirit of the Bourgain-Brezis-Mironescu and Nguyen limit formulas holding in domains of R^N.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا